DL文本分类论文总结 part1

本文总结了几篇关于使用CNN进行文本分类的论文,包括K-max pooling技术、经典CNN模型、简单的向量平均方法以及树形结构在CNN中的应用,探讨了这些方法如何提高文本分类的性能和泛化能力。
摘要由CSDN通过智能技术生成

最近对之前看的部分论文论文进行一些总结(大部分论文都实在实验和模型上进行改进和创新,想看理论分析的可能要失望了)。

1.      A Convolutional Neural Networkfor Modelling Sentences

看的第一篇使用卷积神经网络进行文本分类的文章,主要有两点:

1.      K-max pooling 在序列中取前k大的数并且保持相对位置不变

2.      卷积是对每个词向量点乘以相同维数的向量后再相加。


3.      按作者的思路,这种CNN能够比RecNN更加泛化。

4.      具体过程大致如下(说实话,其中每行的k-maxpooling有点不直观)


2.      Convolutional Neural Netw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值