Bayesian estimation of the mean of a normal distribution

最近在学习lsd slam,在depth estimation中,需要用到bayesian estimation, 假设分布为: yn=N(Θ,σ2) y n = N ( Θ , σ 2 ) . 其中 Θ Θ 为待估计待量, σ σ 是已知的。在这种情况下,我们假设我们拥有一个conjugate prior p(Θ)exp(12σ2(Θμ2)) p ( Θ ) ∝ e x p ( − 1 2 σ 2 ( Θ − μ 2 ) ) ,即 ΘN(μ,σ2) Θ ∝ N ( μ , σ 2 )
下一步,我们需要计算likelihood

p(measureyi)=p("Yi=yi")=P(yiΔ2Yiyi+Δ2|Θ) p ( m e a s u r e y i ) = p ( " Y i = y i " ) = P ( y i − Δ 2 ≤ Y i ≤ y i + Δ 2 | Θ )

上述表达式是对连续正态分布的计算公式,取一个很小的 Δ Δ 计算出likelihood。对上式进行近似可得
12πσ2exp(12δ2(yiΘ)2)Δ 1 2 π σ 2 e x p ( − 1 2 δ 2 ( y i − Θ ) 2 ) Δ

由bayes估计可知:
P(Θ|D)P(D|Theta)P(Θ) P ( Θ | D ) ∝ P ( D | T h e t a ) ∗ P ( Θ ) ,其中 P(Θ|D)ni=1exp(12σ2(yiΘ)2)P(Θ) P ( Θ | D ) ∝ ∐ i = 1 n e x p ( − 1 2 σ 2 ( y i − Θ ) 2 ) P ( Θ ) ,即
P(Θ|D)exp(ni=112σ2(yiΘ)2)P(Θ) P ( Θ | D ) ∝ e x p ( ∑ i = 1 n − 1 2 σ 2 ( y i − Θ ) 2 ) P ( Θ ) ,对于这里,有一个小的tricky,即可将前面的表达式表达为: P(Θ|D)exp(ni=112σ2(yiy¯+y¯Θ)2)P(Θ) P ( Θ | D ) ∝ e x p ( ∑ i = 1 n − 1 2 σ 2 ( y i − y ¯ + y ¯ − Θ ) 2 ) P ( Θ ) ,化简得:
P(Θ|D)exp(12σ2i=1n((yiy¯)2+(y¯Θ)2+2(yiy¯)(y¯Θ)))P(Θ) P ( Θ | D ) ∝ e x p ( − 1 2 σ 2 ∑ i = 1 n ( ( y i − y ¯ ) 2 + ( y ¯ − Θ ) 2 + 2 ∗ ( y i − y ¯ ) ∗ ( y ¯ − Θ ) ) ) P ( Θ )

对于第三项sum之后为0,对于第一项化简可得:
exp(12σ2(nσ2+n(y¯Θ)2))P(Θ) ∝ e x p ( − 1 2 σ 2 ( n σ 2 + n ( y ¯ − Θ ) 2 ) ) P ( Θ )

因此我们可得:
P(Θ)exp(n(y¯Θ)22σ2(Θμ0)22σ20) P ( Θ ) ∝ e x p ( − n ( y ¯ − Θ ) 2 2 σ 2 − ( Θ − μ 0 ) 2 2 σ 0 2 )

对上式取对数,并对 Θ Θ 求偏导数,懒得敲公式了,直接给出所有最后的结果:
这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值