勾股定理的成立条件
在虚数单位已经被较好的理解之后,我们已经可以进入更进一步的,关于几何学的讨论。
考虑一个观察过程,观察者对自己的周期理解为单位一,这时候它观察某个存在,具有单位一的整数倍的周期,比如这个周期为,那么我们就会自然导出,在我们自己为观察者的前提下,这个存在的频率为周期的倒数:
对于这个存在而言,它的周期就是它生灭一次的轮回时间,而这个时间加上一个可观测的最短时间,就完成了一个完整的周期。为什么要加上这个时间?因为若无中间的间隔,则无法区分两个相邻的周期,而这个时间也不应当被算作周期之中,所以它看上去就像是一个0长度的时间,但即便看上去如此,它也必须存在。所以真正的周期可以写作,
这个最小的时间长度,可以认为是观察者认为所观之物反向观察观察者的周期所对应的观察者时间为单位前提下的时间,比如观察者认为所观之物的周期为自己周期的8倍,那么所观之物应当认为观察者周期为自己周期的1/8。而这个数值正好就等于所观之物在观察者周期前提下的频率。由于周期也好,频率也罢,都是一个完整过程,经过这个时间之后,就开启一个新的周期,所以,不难发现,
这其实就是虚数单位的由来。那么,虚数单位和几何学,尤其是勾股定理有什么关系呢?
现在假定,观察者周期为单位前提下的所观之物周期发生了次,过程中,所观之物周期为单位前提下观察者周期发生了次,他们对这个过程是否能够达成共识呢?
我们写出这种情况的表达式,从观察者的视角为,
若要达成共识,首先要取得他们共同的单位,但二者单位显然不同。可是,我们知道,
虽然两者单位不同,但是两者单位的平方相同,
而且无论站在观察者视角还是所观之物视角,x和它的倒数总是可以互换位置,所以,带着单位,我们可以写出
现在不难看出,单位就是两者的共识,但使用的是单位的平方,我们对其开方,就可以得到单位前提下的共识,
显然这里的单位并不影响单位重复的次数也就是。
于是,
就自动成立了,这就是勾股定理。
回顾一下勾股定理到底是如何成立的?存在观察者和所观之物,两者甚至可以相互换位,他们具有不同(甚至可以相同)的周期,也不管这两个周期多大多小,只要有周期性,只要周期之间具有最小间隔,周期加上间隔之后就会重新开始一个新的周期,那么勾股定理就可以成立。而且这种达成共识的方式,无论站在观察者还是所观之物的视角,都可以得到同样的结论。
由此可以知道,勾股定理唯一依赖的就是周期性,反过来说,若没有周期性,勾股定理也就不存在了。而我们知道,周期性是我们对于世界中同样事物反复出现的抽象结果,而如果我们认为同样的事物不会再次出现,那么周期性也就失去了意义,在这种观念指导之下,勾股定理就失效了。这也意味着由勾股定理支撑的几何空间,就失去了它存在的根基。换句话说,我们也由此突破了时空的限制。
再细致一些,若要勾股定理成立,对于a,b,x,1/x有什么要求呢?显然要求要在两个极限和x之间,而且不能靠着极限太近,
实际上靠近极限,就是突破勾股定理限定时空的方式:如果靠得太近,若仍然需要建立这样的共识系统,就必须在更大的和更小的上来实现了。
有了勾股定理,我们自然会想到圆,也就是说,给定和可以求,而给定,则可以反求和,亦即到顶点的距离等于定长的点的集合。这其中就涉及到两个直角边的长度,以及其中一个锐角之间的关系,这就是三角函数。而三角函数中,最直接使用两个直角边长度的,就是正切函数,
也就是给出两个直角边的长度,求所对的,以及所相邻的角的正切值是多少,也就是等于多少。这里显然是知道角度,求比值。最笨的方法,查表,求出对应的这个数值,其结果就是的数值,当然如果能 用展开式计算就更好了。
我们关心的不是求值,而是这里除了和作为某个周期的长度的重复(由此也叫做长度)之外,还引入了一个叫做角度的概念,也就是。从反函数的角度理解,若是知道和,就可以求出这个到底是多少来。这时候,我们用的是,
对于这个函数,自变量是一个函数,
它是两条边长度的比值,其函数指的是这个比值对应的角度。这都是我们知道的。现在让我们看看它的导数,也就是说,当这个比值发生一个最为微小的变化的时候,对应的角度会有多大的变化,也就是说,
具体来看,则是,
看到这里出现
不难想到,这其实就是
也就是说,观察者认为,所观之物的周期(或者频率)是自己的倍,而其中观察者周期重复了次,所观之物周期重复了次,这就又回到了勾股定理,
所以这个结果,
若能将或者其倒数分离出来,它就是观察者对所观之物的认识,或者说,两个系统周期或者频率的比值,这个数也是虚数单位本身,因为它就是,也就是。
这句话的意思是,我们去哪里找虚数单位呢?从反正切函数的导数里面找,而这个数显然是精度有限的,如果精度无限,则意味着存在无限精度的虚数单位,但这是不可能的,也是不必要的。
从
角度理解,,也就是比值稍微变化一丁点,对应的角度就会产生的变化,等于
虚数单位和周期之间的比值。由角度的变化反推角度,那么角度就是这些虚数单位的大小对应的虚数单位数量的积累(由导数或者微分反推积分)。可见这里出现了一大堆不同的,如果稳定不变,则意味着出现一大堆不同的。而每一次的微小增量,都会对应虚数单位的导数和周期的比值作为角度的增量。也就是说,所谓角度,就是虚数单位倒数,对不断增长(或者减小)的周期进行的累积。而这个周期最为微小的变化,就是
所以,以周期做最微小的而变化,每次增量为,则对应的角度,每次增量为和周期长度的比值,也就是增量占周期长度的比率。这样的比例关系累积起来,就是观察者和所观之物周期的比率,做最小增长时,所对应的增长部分占周期的比率的累加结果,这个结果就叫做“角”。
具体来说,若不变,则这个系统指的是一个以虚数单位倒数为增量的,周期或者频率不断提升(或者降低)的系统,当然也可能是不变,的周期或者频率提升或者降低的系统,这两者谁变化都是一样的,具有对称性。或者两者都变化也是一样的,最终看的是两者变化后的比值。因为终究不是
而是
而正以单步的速率来增长,我们假定了和两个系统具有一样的单位,这才有了,
我们这样假定的原因上文已经说过,就是,
中的可以消去,也就是认为它是多少都一样,我们就可以认为它就是1,也就是两个系统的周期天然比率就是1比1,而周期长度的差异被算在了它们重复的次数也就是和上面。
所以实际上来说,和并不需要真的不同,只是它们各自对应的系统出现频率或者周期上的微小变化,就可以保证两者实现一个不变的c。我的意思是,若考虑平面直角坐标系,其中原点代表一种装填或者相对位置,另一个点代表另一个状态或者位置,并不真的需要点发生变化,只需要所对应的周期或者频率和所对应的周期或者频率(其实就是基)出现以那个时刻的周期或者频率的微分(就是周期或者频率的倒数)为增量(也可能是负增量)进行提升(或者下降),那么这个点仍然可以绕着原点“旋转起来”。这时候我们旋转的不是点,而是点所在的坐标系。
这其实就是,以当前周期或者频率的微分为增量,稳定的不断提升(也可能是下降)造成的效果,而描述这个效果的另一个表达式,就是
这表达的是,以一个极小的1x为增量不断累积达到x次得到的结果。我们也可以用虚数单位表示,
所以
不难看出只要结果总是一个0到1之间的数,而如果就会出现
f
它是可以很大的,但是的绝对值可以尽可能的大,但不会超过,若超过了,则会出现循环的效果。所以作为积累的结果,其正负的差异是非常大的。正向积累可以形成一个非常稳定的内核,但负向积累将会导致其表象上的一次又一次的重复。但其真正的内在的振动总量仍然是增加的,而且增加的速度越来越快。
现在让我们考虑坐标系不变的情况,这时候要实现稳定的,则需要不断变换和的比例关系。具体的做法就是稳定的交替的此消彼长。这就可以选择出一个由至少两种振动构成的场域,或者说环境。环境一旦形成,则它可以自动的形成坐标系的旋转,也就是频率或者周期的自动提升。
所以回到最初的问题,为什么一切都在旋转呢?因为频率或者周期的增量必须存在,这是要保证存在性,或者至少是我们常规意义上的存在性的最根本的条件。