勾股定理的成立条件
在虚数单位已经被较好的理解之后,我们已经可以进入更进一步的,关于几何学的讨论。
考虑一个观察过程,观察者对自己的周期理解为单位一,这时候它观察某个存在,具有单位一的整数倍的周期,比如这个周期为,那么我们就会自然导出,在我们自己为观察者的前提下,这个存在的频率为周期的倒数:
对于这个存在而言,它的周期就是它生灭一次的轮回时间,而这个时间加上一个可观测的最短时间,就完成了一个完整的周期。为什么要加上这个时间?因为若无中间的间隔,则无法区分两个相邻的周期,而这个时间也不应当被算作周期之中,所以它看上去就像是一个0长度的时间,但即便看上去如此,它也必须存在。所以真正的周期可以写作,
这个最小的时间长度,可以认为是观察者认为所观之物反向观察观察者的周期所对应的观察者时间为单位前提下的时间,比如观察者认为所观之物的周期为自己周期的8倍,那么所观之物应当认为观察者周期为自己周期的1/8。而这个数值正好就等于所观之物在观察者周期前提下的频率。由于周期也好,频率也罢,都是一个完整过程,经过这个时间之后,就开启一个新的周期,所以,不难发现,
这其实就是虚数单位的由来。那么,虚数单位和几何学,尤其是勾股定理有什么关系呢?
现在假定,观察者周期为单位前提下的所观之物周期发生了次,过程中,所观之物周期为单位前提下观察者周期发生了
次,他们对这个过程是否能够达成共识呢?
我们写出这种情况的表达式,从观察者的视角为,
若要达成共识,首先要取得他们共同的单位,但二者单位显然不同。可是,我们知道,
虽然两者单位不同,但是两者单位的平方相同,
而且无论站在观察者视角还是所观之物视角,x和它的倒数总是可以互换位置,所以,带着单位,我们可以写出
现在不难看出,单位就是两者的共识,但使用的是单位的平方,我们对其开方,就可以得到单位
前提下的共识,
显然这里的单位并不影响单位重复的次数也就是
。
于是,