筛选出与AI/计算机科学相关的会议和期刊,并按h5指数排序:
会议/期刊排名(AI相关)
-
CVPR (IEEE/CVF Conference on Computer Vision and Pattern Recognition)
- h5指数:440
- h5中位数:689
- 领域:计算机视觉
- 特点:计算机视觉领域最顶级会议,影响力最大
-
NeurIPS (Neural Information Processing Systems)
- h5指数:337
- h5中位数:614
- 领域:机器学习、神经网络
- 特点:机器学习领域最具影响力的会议之一
-
ICLR (International Conference on Learning Representations)
- h5指数:304
- h5中位数:584
- 领域:深度学习
- 特点:深度学习领域的重要会议,尤其关注表示学习
-
ICCV (IEEE/CVF International Conference on Computer Vision)
- h5指数:291
- h5中位数:484
- 领域:计算机视觉
- 特点:与CVPR并列的计算机视觉顶级会议
-
ICML (International Conference on Machine Learning)
- h5指数:268
- h5中位数:424
- 领域:机器学习
- 特点:机器学习理论与应用的重要会议
-
AAAI (AAAI Conference on Artificial Intelligence)
- h5指数:220
- h5中位数:341
- 领域:人工智能
- 特点:综合性人工智能会议
-
ACL (Meeting of the Association for Computational Linguistics)
- h5指数:215
- h5中位数:362
- 领域:自然语言处理
- 特点:NLP领域最重要的会议
-
ECCV (European Conference on Computer Vision)
- h5指数:206
- h5中位数:306
- 领域:计算机视觉
- 特点:欧洲地区重要的计算机视觉会议
-
TPAMI (IEEE Transactions on Pattern Analysis and Machine Intelligence)
- h5指数:196
- h5中位数:348
- 领域:机器学习、模式识别
- 特点:该领域最重要的期刊之一
领域分布分析
-
计算机视觉三大会议
- CVPR
- ICCV
- ECCV
-
机器学习核心会议
- NeurIPS
- ICML
- ICLR
-
专业领域会议
- ACL (自然语言处理)
- AAAI (通用人工智能)
-
顶级期刊
- TPAMI
重要观察
-
影响力分布
- 计算机视觉领域的CVPR具有最高的影响力
- 机器学习三大会议(NeurIPS、ICML、ICLR)影响力都很高
- 期刊的影响力相对较低,可能是因为AI领域更重视会议发表
-
引用特征
- 视觉领域的引用量普遍较高
- 机器学习基础理论会议的引用也很可观
- 专业领域会议的引用相对较低,但仍然很有影响力
-
发表策略建议
- 计算机视觉研究优先考虑CVPR/ICCV/ECCV
- 机器学习研究可以考虑NeurIPS/ICML/ICLR
- NLP研究首选ACL
- 综合性AI研究可以考虑AAAI
这个排名很好地反映了AI领域各个分支的学术影响力,对研究方向选择和论文发表都有重要的参考价值。