10分钟学会sovits第一篇

So-vits-svc 基于端到端架构的VITS和soft-vc,用户只需准备几十分钟到几个小时不等的语音或歌声数据,就能制作(训练)属于自己的 AI 声库 (前提是你的显卡足够给力),将一段语音或歌声转换为你想要的音色。

获取项目

首先我们需要从github上获取项目

git clone https://github.com/svc-develop-team/so-vits-svc

声音文件

把你要训练的声音的放到dataset_raw目录下,最好切成5s - 15s的人声片段。可以使用工具进行切片
工具链接:https://github.com/flutydeer/audio-slicer/releases
如下所示,这里我把所有切片好的声音文件放到了 yan 的文件夹下,要用拼音或者英文命名。
在这里插入图片描述

安装依赖包

这里我使用的python3.9,可以用conda配置,
运行命令

conda create -n sovits python=3.9 

这里等待 conda 安装完成后,再运行命令

conda activate sovits

配置好 python3.9的环境后进入so-vits-svc文件夹
运行命令

pip install -r  requirements.txt

我在运行过程中有报错,有可能安装包的过程中有的包没有装上,我们可以在运行程序时,根据报错一步一步安装包

至于基础模型如何下载,数据如何训练,config 文件配置请看第二篇文章

03-10
### SOVITS语音合成框架概述 SOVITS是一个基于深度学习的高质量语音合成框架,能够实现自然流畅的声音生成。该框架利用变分自编码器(VAE)和扩散模型(diffusion model),通过大量的音频数据训练来捕捉声音特征并生成逼真的语音[^1]。 #### 主要特点 - **高保真度**:可以创建接近真人发音水平的合成音质。 - **多说话者支持**:允许在同一系统中处理不同人的声音特性。 - **灵活可控性**:提供多种参数调整选项以适应特定应用场景需求。 ### 使用方法 为了使用SOVITS进行语音合成,通常需要经历以下几个方面的工作: #### 准备环境 安装必要的依赖库以及配置运行平台是第一步操作。对于Python项目来说,这可能涉及到设置虚拟环境、安装PyTorch等机器学习框架以及其他辅助工具包。具体命令如下所示: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 git clone https://github.com/sovits-project/SOVITS.git cd SOVITS pip install -r requirements.txt ``` #### 数据预处理 准备用于训练的数据集非常重要。一般情况下,会先收集大量带标注的人声录音文件作为输入源材料;之后再经过清洗、切片等一系列转换过程形成适合喂给神经网络的形式。这部分工作可以通过编写脚本来完成自动化流程。 #### 训练模型 一旦准备好干净整齐的数据样本集合,就可以着手构建自己的个性化模型了。这里建议参照官方文档中的指导说明来进行超参调优实验,在GPU加速的支持下反复迭代直至获得满意的效果为止。下面给出一段简单的训练代码片段供参考: ```python from sovits.train import train_and_evaluate config_path = 'configs/base.yaml' train_and_evaluate(config_path=config_path, resume=False) ``` #### 推理部署 当得到满意的预训练权重后,下一步就是将其应用于实际产品或者服务当中去了。此时往往还需要考虑性能优化问题比如量化剪枝之类的技术手段降低资源消耗提高响应速度等方面的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小~小

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值