自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 如何建立Scrum敏捷项目管理角色和价值观

本文我会尽量以白话方式了解团队中不同的角色,以及如何改变团队对产品开发的价值观和理念。

2024-04-02 20:27:46 1554

原创 零基础打造Scrum敏捷项目管理工作环境

当Scrum团队在支持持续和密切协作的环境中一起工作时,团队将大放异彩。为他们创造合适的工作环境,能对他们的成功带来巨大的帮助。

2024-04-01 20:19:47 603

原创 使用人工智能助力项目成本管理实战

综上所述,项目超出预算的原因主要包括人工成本、设备成本和软件成本、差旅费和办公费用的超出预算,以及项目计划对成本预估的不准确。项目经理在使用ChatGPT、文心一言等工具辅助项目管理时,可以将ChatGPT应用在以下方面:项目成本估算、项目成本预算、项目成本控制和项目成本分析,能够提高项目成本管理的效率和准确性。在项目初期,我们需要基于有限的信息对整个项目进行预算,上述过程可以提供更加详细,项目团队根据实际情况进行进一步判断与验证,得出的结果可为项目的可行性分析提供重要参考。

2024-03-31 19:37:42 989

原创 最全软考高项工具技术总结(下)

第四版教材把工具和技术分为:数据收集技术、数据分析技术、数据表现技术、决策技术、沟通技巧、人际关系和团队技能、其他。我会按照上面的分类总结说明并标识他们用在哪些过程。小伙伴们可以通读理解做到有印象能选对应付上午选择,选几个深化用在下午论文的举例中。没必要背!

2024-03-30 21:10:43 882

原创 最全软考高项工具技术总结(上)

第四版教材把工具和技术分为:数据收集技术、数据分析技术、数据表现技术、决策技术、沟通技巧、人际关系和团队技能、其他。我会按照上面的分类总结说明并标识他们用在哪些过程。小伙伴们可以通读理解做到有印象能选对应付上午选择,选几个深化用在下午论文的举例中。没必要背!

2024-03-30 20:50:12 1172 2

原创 小米SU7阶段性成功对项目管理的启发

昨晚,小米汽车27分钟实现50000台大定突破!瞬间引爆微博热搜,几乎人人口中都是在热议这件事,小米汽车现阶段的成功对于项目管理也有着很大的启示。

2024-03-29 20:31:52 1980 1

原创 2024软考高项备考的一些真实经验

最近群里总说软考高项比以前难考了,的确机考的到来导致知识点不再是以前辅导班老师说的那几点,全本书任意角落的任意一句话都可能拿来出题,但真的就变难了吗?作为“第三版换第四版+首次机考”通过了的一次过选手,结合考试过程的整体感受,说下我的一些认识,希望对准备参考的伙伴们有一些帮助。老实说,辅导班仍旧有帮助,但花那么多钱值不值得就见仁见智了。辅导班我个人认为只适合首次参加考试需要快速过整体知识点的同学,冲刺阶段在做题之余可以看看他们发的一些东西进行查漏补缺就足够了。

2024-03-28 20:37:18 3459 3

VGG Net的TensorFlow实现

使用VGG19模型构建的图像识别,采用预训练并保存为Numpy张量的模型文件。可在此基础上继续训练。 代码文件说明 vgg19.py: 构建VGG19网络,实现一个vgg19的类 utils.py: 工具类,实现图片的读取和打印最终的结果 test_vgg19.py: 测试VGG19类,读取测试图片并进行识别 数据文件说明 vgg19.npy: 预训练的模型文件 synset.txt: 储存所有的标签的文件 test_data/: 存放测试图片 使用说明 直接运行test_vgg19.py,会对test_data中的tiger.jpg进行识别并打印出TOP1和TOP5。 然后将此图片标注为老虎加入模型训练,再次进行识别。并保存新的模型为test-save.npy 需要更改图片进行识别,则需要更改加载图片的名称,如不需要加载测试图片进行训练可删除test_vgg19.py的35-44行

2024-03-31

LeNet-5的TensorFlow实现源码

利用tensorflow实现手写体数字实现,使用MNIST数据集进行训练,在MNIST测试集上,准确率可到99.1% 代码文件说明 config.py: 神经网络的超参数配置 leNet.py: 构建LeNet网络 Train.py: 加载MINIST数据并训练 Inference.py: 加载模型完成对图片的识别 UI.py 生成可进行手写文字并预测的界面 数据文件说明 MNIST_data/: 从MNIST上下载的数据集 checkpoint: 保存的模型文件 使用说明 在config.py中进行超参数的配置,运行Train.py可以直接进行训练,也可以直接运行UI.py进行验证 UI中,用鼠标在黑色区域进行手写,点击检测即可进行识别

2024-03-31

Python常见面试题50题答案

Python常见面试题50题答案

2024-03-31

软考高项131个工具定义及属于哪些过程

软考高项131个工具定义及属于哪些过程 信息系统项目管理师

2024-03-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除