Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~n(1<=n<=3000).But there is a big problem for him.He wants soldiers sorted in increasing order.He find a way to sort,but there three rules to obey.
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = 15432 and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = 1 ,A2 = 5 ,A3 = 4 ,A4 = 32 ,After Sorting Each Subarray:A1 = 1 ,A2 = 5 ,A3 = 4 ,A4 = 23 ,After swapping A4 and A2:A1 = 1 ,A2 = 23 ,A3 = 4 ,A4 = 5 .
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = 15432 and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = 1 ,A2 = 5 ,A3 = 4 ,A4 = 32 ,After Sorting Each Subarray:A1 = 1 ,A2 = 5 ,A3 = 4 ,A4 = 23 ,After swapping A4 and A2:A1 = 1 ,A2 = 23 ,A3 = 4 ,A4 = 5 .
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
For every case:
Next line is n.
Next line is the number for the n soildiers.
Every case a line.
2 5 1 5 4 3 2 5 4 5 1 2 3
Sample Output
4
2
分析:我们考虑对于一个最优解,它最后交换的部分要么是acb的形式要么是ab的形式,如果是acb的形式,那么
Min(a) = Max(c) + 1,Max(b) = Min(c) - 1,我们可以事先把整个序列直接贪心拆分,acb 或 ab一定是完整的一块,直接暴力枚举c就行了,总复杂度O(n^2).
f[i][j] 表示 i 到 j最多拆成几块,枚举左端点i,然后从左往右扫,遇到恰好连续的计数器就+1并且把值赋给f[i][j],如果最小值变化了计数器就清零,这样就可以n^2的预处理出来f[i][j].
#include <bits/stdc++.h>
#define N 3005
using namespace std;
typedef long long ll;
int T,n,p[N],fi[N][N],fa[N][N],block[N],l[N],r[N],f[N][N];
bool check2(int l,int r)
{
return ((fa[l][r] - fi[l][r]) == r - l);
}
bool check1(int l,int r)
{
return (check2(l,r) && fi[l][r] == l);
}
int main()
{
cin.sync_with_stdio(false);
cin>>T;
while(T--)
{
memset(l,0,sizeof(l));
memset(f,0,sizeof(f));
memset(fi,0,sizeof(fi));
memset(fa,0x3f,sizeof(fa));
memset(block,0,sizeof(block));
cin>>n;
for(int i = 1;i <= n;i++) cin>>p[i];
for(int i = 1;i <= n;i++)
{
fi[i][i] = fa[i][i] = p[i];
for(int j = i+1;j <= n;j++) fi[i][j] = min(fi[i][j-1],p[j]),fa[i][j] = max(fa[i][j-1],p[j]);
}
int now = 1;
for(int i = 1;i <= n;i++)
{
if(!l[now]) l[now] = i;
r[now] = i;
block[i] = now;
if(check1(1,i)) now++;
}
for(int i = 1;i <= n;i++)
{
int cnt = 1;
f[i][i] = 1;
for(int j = i+1;j <= n;j++)
{
if(fi[i][j-1] != fi[i][j]) cnt = 0;
if(check2(i,j)) f[i][j] = ++cnt;
}
}
int ans = block[n];
for(int i = 1;i <= n;i++)
for(int j = i;j <= n;j++)
if(block[i] == block[j] && check2(i,j))
{
int lab = block[i],L = l[lab],R = r[lab];
if(i == L || j == R) continue;
if(!check2(L,i-1) || !check2(j+1,R)) continue;
if(fi[L][i-1] != fa[i][j] + 1 || fa[j+1][R] != fi[i][j] - 1) continue;
ans = max(ans,block[n] + 1 + f[i][j]);
}
for(int i = 1;i <= n;i++)
{
int lab = block[i],L = l[lab],R = r[lab];
if(!check2(L,i) || L == R || i == R || fa[L][i] != fa[L][R]) continue;
ans = max(ans,block[n]+1);
}
cout<<ans<<endl;
}
}