1x1卷积
GoogleNet/Inception
用不同尺度卷积提取不同尺度特征
得到同样尺度特征图,拼接起来
1x1卷积
1.增加非线性
1x1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性,使得网络可以表达更加复杂的特征
2.特征降维
通过控制卷积核的数量达到通道数大小的放缩。特征降维带来的好处是可以减少参数和减少计算量
计算量
Inception module加1x1卷积特征降维
a的weights大小
1x1x192x64 + 3x3x192x128 + 5x5x192x32 = 387072
a的输出feature map大小
28x28x64 + 28x28x128 + 28x28x32 + 28x28x192 = 28x28x416
b的weights大小
1x1x192x64 + (1x1x192x96 + 3x3x96x128) + (1x1x192x16 + 5x5x16