目标检测基础

本文介绍了目标检测的基础知识,包括1x1卷积在Inception模块中的作用,空洞卷积如何扩大感受野,转置卷积用于上采样,以及全卷积网络FCN的应用。此外,还讲解了目标检测中的评价指标,如交并比IoU、mAP及其计算方法,并介绍了非极大值抑制NMS在处理多预测目标时的作用。
摘要由CSDN通过智能技术生成

1x1卷积

GoogleNet/Inception
在这里插入图片描述
用不同尺度卷积提取不同尺度特征
得到同样尺度特征图,拼接起来

1x1卷积
1.增加非线性
1x1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性,使得网络可以表达更加复杂的特征
2.特征降维
通过控制卷积核的数量达到通道数大小的放缩。特征降维带来的好处是可以减少参数和减少计算量

计算量在这里插入图片描述
Inception module加1x1卷积特征降维在这里插入图片描述
a的weights大小
1x1x192x64 + 3x3x192x128 + 5x5x192x32 = 387072
a的输出feature map大小
28x28x64 + 28x28x128 + 28x28x32 + 28x28x192 = 28x28x416

b的weights大小
1x1x192x64 + (1x1x192x96 + 3x3x96x128) + (1x1x192x16 + 5x5x16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值