AFCI 应用笔记二之数据采集

本文详细介绍了使用PECC数据采集板和GPMChina工具进行高效数据采集的方法,强调了数据质量和标注的重要性。文中还涉及串口配置、数据采集步骤、标注原则,以及如何通过上位机进行数据分析、在线识别和文件验证,以确保神经网络模型的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 简介

基于监督学习的神经网络算法需要大量数据作为输入,模型完全由数据驱动,其数据质量是算法有效的必要条件,所以如何高效的采集到数据,以及正确的标注或分析是极其重要的,如果第一步有问题,后续的所有工作都是徒劳。

本文将介绍 PECC 的数据采集板,以及来自 GPM China 的数据采集工具,简单分析数据质量的一些方法,以及需要注意的一些事项。
图1.PECC 硬件 V1.0
图1.PECC 硬件 V1.0

2. 上位机介绍

图2.上位机主界面
图2.上位机主界面

2.1. 打开串口

单击①找到相应的串口号,并通过②选择合适的波特率,点击③打开串口。注意:

  1. 如果连接设备是串口+USB 虚拟串口,则需要选择正确的波特率才能正常通讯。
  2. 如果连接设备是 USB 虚拟串口(比如 PECC 的开发板),则波特率可以随便选择。

2.2. 数据采集

通过④设置标签,⑤设置采样率(最高 400KHz),⑥设置采样时间,⑦选择通道(目前上位机支持四个通道),选择⑧开始数据采集。

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值