一。概括
集成学习(ensemble learning),本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。可以用于分类问题集成、回归问题集成、特征选取集成、异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。
集成学习思想:对于训练集数据,通过训练若干个个体学习器,再经过一定结合策略,最终形成一个强学习器,以达到博采众长。
可以分为同质集成和异质集成。
同质集成:只包含同种类型的个体学习器,比如都是决策树个体学习器。
异质集成:包含不同类型的个体学习器。
目前,同质个体学习器应用最广泛,一般常说的集成学习的方法都指的是同质个体学习器。同质个体学习器使用最多的模型是CART决策树和神经网络。
同质个体学习