【机器学习】集成学习

一。概括

集成学习(ensemble learning),本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。可以用于分类问题集成、回归问题集成、特征选取集成、异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。


集成学习思想:对于训练集数据,通过训练若干个个体学习器,再经过一定结合策略,最终形成一个强学习器,以达到博采众长。


可以分为同质集成和异质集成。

同质集成:只包含同种类型的个体学习器,比如都是决策树个体学习器。

异质集成:包含不同类型的个体学习器。


目前,同质个体学习器应用最广泛,一般常说的集成学习的方法都指的是同质个体学习器。同质个体学习器使用最多的模型是CART决策树和神经网络。


同质个体学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值