强调应用的WACV 2021,5篇最佳论文都在这里了

本文总结了WACV 2021会议的5篇最佳论文,涉及领域包括3D深度学习、人体姿态估计、6D对象姿态估计等。获奖作品利用深度学习技术解决医学图像重建、多视图建模等问题,展示了深度学习在计算机视觉领域的前沿应用。
摘要由CSDN通过智能技术生成

format,png

千呼万唤始出来,WACV 2021会议已过去近一个月,本文总结其获奖论文。

本次会议共设 5 个奖项:最佳算法论文奖、最佳应用论文奖、最佳学生论文提名奖、最佳论文荣誉提名奖、最佳学生论文荣誉提名奖。

format,png

由于疫情原因,该会议为线上举行,获奖情况亦是线上公布。官方已给出视频,视频包含公布获奖论文以及获奖论文相关作者对论文的介绍。

详情请看视频:

获奖论文分别来自模型部署、图像恢复、6D姿态估计、人体姿态估计、医学领域的大脑皮层重建五个研究方向。

     01      

最佳算法论文奖

DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction

format,png

在目前医学领域,神经退行性疾病的研究依赖于从磁共振成像(MRI)中重建和分析大脑皮层。传统的框架,如 FreeSurfer 需要冗长的运行时间,它的加速变种 FastSurfer 仍然依赖于 voxel-wise 分割,这是受其分辨率的限制,捕捉狭窄的连续对象作为皮质表面。

针对以上限制,作者在本次研究中,提出 DeepCSR,用于从 MRI 重建皮质表面的 3D 深度学习框架。训练一个具有 hypercolumn 特征的神经网络模型,来预测大脑模板空间中各点的隐式表面表征。训练后,通过评估特定坐标处的表面表征,随后应用 topology correction 算法和 isosurface extraction 方法,得到足够具有细节信息的皮层表面。

由于此方法的连续性质和其超列特征方案的有效性,DeepCSR 在高分辨率下可以有效地重建皮层表面,捕捉皮层折叠的精细细节。

另外,DeepCSR比广泛使用的FreeSurfer工具箱及其深度学习驱动的变种FastSurfer在重建MRI的皮质表面上更准确、更精确、更快速,这有助于大规模的医学研究和新的医疗应用。

作者 | Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, Olivier Salvado

单位 | CSIRO Health & Biosecurity;昆士兰科技大学;CSIRO Data61

论文 | https://arxiv.org/abs/2010.11423

format,png

     02      

最佳应用论文奖

3D Human Pose and Shape Estimation Thro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值