PRML 第二章 Beta分布

本文介绍了贝叶斯推断中的共轭分布和超参数概念,并详细讲解了Beta分布,包括其定义、性质及在二项分布中的应用。通过实例展示了如何利用Beta分布进行先验和后验概率的更新,以及在顺序学习中的作用,阐述了随着观测数据增加,后验概率不确定性降低的过程。
摘要由CSDN通过智能技术生成

学习Beta分布之前,先补充一下几个相关的基础知识。
1. 共轭分布
如果后验分布和先验分布具有相同的函数形式,则先验和后验叫做共轭分布,并且先验叫做似然的共轭先验。
2. 超参数
当参数这里写图片描述为随机变量时,该参数分布中的参数就是超参数,简单的说就是参数的参数(超参数控制了参数的概率分布),在贝叶斯方法中出现的比较多。
3. Beta分布引入
现在假设我们扔一个硬币3次,碰巧3次都是正面朝上。那么N = m = 3,(m为正面向上的次数,N为实验的总次数)且这里写图片描述(见上一篇博客)。这种情况下,最大似然的结果会预测所有未来的观测值都是正面向上,常识告诉我们这个是不合理的。
为了⽤贝叶斯的观点看待这个问题,我们需要引⼊⼀个关于µ的先验概率分布p(µ)。为了数学形式上的一致和后续计算的方便,选择一个跟似然函数(这里写图片描述)具有函数形式一致性的先验概率,这样计算得到的后验分布(正⽐于先验和似然函数的乘积)就会具有与先验分布相同的函数形式(共轭分布)。因此,可以把先验分布选择为Beta分布。
4. Beta分布
Beta分布定义为:
这里写图片描述,其中为Gamma函数,当n为整数时有这里写图片描述.
Beta分布的均值和⽅差为:
这里写图片描述(1)
这里写图片描述
2016.6.6 补充:其实beta分布就是二项分布推广成实数域上的情况而已!
5.µ的后验概率
µ的后验概率分布现在可以这样得到:把Beta先验与⼆项分布的似然函数相乘,然后归⼀化。只保留依赖于µ的因⼦,我们看到后验概率分布的形式为:
这里写图片描述, 其中l = N − m,即对应于硬币“反⾯朝上”的样本数量。实际上,它仅仅是另⼀个Beta分布。通过与Beta分布对⽐,我们可以得到它的归⼀化系数。因此µ的后验概率分布:
这里写图片描述(*)
如果⼀个数据集⾥有m次观测为x = 1,有l次观测为x = 0,那么从先验概率到后验概率, a的值变⼤了m, b的值变⼤了l。这让我们可以简单地把先验概率中的超参数a和b分别看成x = 1和x = 0的有效观测数。注意, a和b不⼀定是整数。
6. 顺序学习方法
顺序⽅法每次使⽤⼀个观测值,或者每次使⽤⼀⼩批观测值,然后在使⽤下⼀个观测值之前丢掉它们。例如,顺序⽅法可以被⽤于实时学习的场景中。在实时学习的场景中,输⼊为⼀个稳定持续的数据流,模型必须在观测到所有数据之前就进⾏预测。由于顺序学习的⽅法不需要把所有的数据都存储到内存⾥,因此顺序⽅法对于⼤的数据集也很有⽤。
举例:如果我们的⽬标是尽可能好地预测下⼀次试验的输出,那么我们必须估计出给定观测数据集D的情况下, x的预测分布,即:
这里写图片描述
又因为:这里写图片描述
所以:这里写图片描述, 即为这里写图片描述的数学期望。
由公式(1)可以得到:这里写图片描述
如果我们接下来观测到更多的数据,那么后验概率分布可以扮演先验概率的⾓⾊。为了说明这⼀点,我们可以假想每次只取⼀个观测值,然后在每次观测之后更新当前的后验分布。更新⽅法是观测到⼀个x = 1仅仅对应于把a的值增加1,⽽观测到x = 0会使b增加1。同时我们可以看到,当观测的数量增加时,后验分布的图像变得更尖了。如果a → ∞或者b → ∞,那么⽅差就趋于零。即随着我们观测到越来越多的数据,后验概率表⽰的不确定性将会持续下降。
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值