超详细理解Gamma分布,Beta分布,多项式分布,Dirichlet狄利克雷分布

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bitcarmanlee/article/details/82156281

1.Gamma函数

首先我们可以看一下Gamma函数的定义:
Γ(x)=0tx1etdt\Gamma(x) = \int _{0}^{\infty}t^{x-1} e^{-t}dt

Gamma的重要性质包括下面几条:
1.递推公式:Γ(x+1)=xΓ(x)\Gamma(x+1)=x\Gamma(x)
2.对于正整数n, 有Γ(n+1)=n!\Gamma(n+1) = n!
因此可以说Gamma函数是阶乘的推广。
3.Γ(1)=1\Gamma(1) = 1
4.Γ(12)=π\Gamma(\frac{1}{2}) = \sqrt{\pi}

关于递推公式,可以用分部积分完成证明:
KaTeX parse error: No such environment: align* at position 7: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \Gamma(n+1) &=…
由洛必达法则,易知括号内第一项为0, 则可以得出Γ(n+1)=nΓ(n)\Gamma(n+1)=n\Gamma(n)

2.Beta函数

B函数,又称为Beta函数或者第一类欧拉积分,是一个特殊的函数,定义如下:
B(x,y)=01tα1(1t)β1 dtB(x, y) = {\int _{0}^{1}t^{\alpha -1}(1-t)^{\beta -1}\,dt}

B函数具有如下性质:
1.B(x,y)=B(y,x)B(x,y) = B(y, x)
2.B(x,y)=(x1)!(y1)!(x+y1)!B(x,y) = \frac{(x - 1)!(y - 1)!}{(x + y -1)!}
3.B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}

3.Beta分布

在介绍贝塔分布(Beta distribution)之前,需要先明确一下先验概率、后验概率、似然函数以及共轭分布的概念。

1.通俗的讲,先验概率就是事情尚未发生前,我们对该事发生概率的估计。利用过去历史资料计算得到的先验概率,称为客观先验概率; 当历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率。例如抛一枚硬币头向上的概率为0.5,这就是主观先验概率。
2.后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。
3.先验概率和后验概率的区别:先验概率不是根据有关自然状态的全部资料测定的,而只是利用现有的材料(主要是历史资料)计算的;后验概率使用了有关自然状态更加全面的资料,既有先验概率资料,也有补充资料。另外一种表述:先验概率是在缺乏某个事实的情况下描述一个变量;而后验概率(Probability of outcomes of an experiment after it has been performed and a certain event has occured.)是在考虑了一个事实之后的条件概率。
4.共轭分布(conjugacy):后验概率分布函数与先验概率分布函数具有相同形式

先验概率和后验概率的关系为:
posterior=likelihoodpriorposterior = likelihood * prior

Beta分布的概率密度函数为:
f(x;α,β)=xα1(1x)β101uα1(1u)β1 du=Γ(α+β)Γ(α)Γ(β) xα1(1x)β1=1B(α,β) xα1(1x)β1{\begin{aligned} f(x;\alpha ,\beta )&={\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\int _{0}^{1}u^{\alpha -1}(1-u)^{\beta -1}\,du}}\\ &={\frac {\Gamma (\alpha +\beta )}{\Gamma (\alpha )\Gamma (\beta )}}\,x^{\alpha -1}(1-x)^{\beta -1}\\ &={\frac {1}{\mathrm {B} (\alpha ,\beta )}}\,x^{\alpha -1}(1-x)^{\beta -1} \end{aligned}}

随机变量X服从参数为 α\alpha ,β\beta 的Β分布通常写作
XBe(α,β)X\sim {\textrm {Be}}(\alpha ,\beta )

Beta分布与Gamma分布的关系为:
B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x, y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}

用一句话来说,beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。

Beta分布的期望与方差分别为:
μ=E(X)=αα+β\mu = E(X) = \frac {\alpha} {\alpha + \beta}
Var(X)=E(Xμ)2=αβ(α+β)2(α+β+1)Var(X) = E(X-\mu) ^ 2 = \frac{\alpha \beta}{(\alpha + \beta) ^ 2(\alpha + \beta + 1)}

4.Beta分布是二项分布的共轭先验

这个结论很重要,在实际中应用也相当广泛。
在这之前,我们先简单回顾一下伯努利分布与二项分布。
伯努利分布(Bernoulli distribution)有称为0-1分布,伯努利分布式基于伯努利实验(Bernoulli trial)而来。

伯努利试验是只有两种可能结果的单次随机试验,即对于一个随机变量X来说:
Pr[X=1]=pP_r[X=1] = p
Pr[X=0]=1pP_r[X=0] = 1-p
伯努利实验本质上即为"YES OR NO"的问题。最常见的一个例子就是抛硬币。
如果进行一次伯努利实验,假设成功(X=1)的概率为p(0<=p<=1)p(0<=p<=1),失败(X=0)的概率为1p1-p,称随机变量X服从伯努利分布。

二项分布(Binomial distribution)是n重伯努利试验成功次数的离散概率分布。
如果试验E是一个n重伯努利试验,每次伯努利试验的成功概率为p,X代表成功的次数,则X的概率分布是二项分布,记为X~B(n,p),其概率质量函数为
P{X=k}=Cnkpk(1p)nk,k=0,1,2, ,nP\{X=k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, 2, \cdots, n
从上面的定义很明显可以看出,伯努利分布是二项分布在n=1时的特例。
二项分布使用最广泛的例子就是抛硬币了,假设硬币正面朝上的概率为p,重复扔n次硬币,k次为正面的概率即为一个二项分布概率。

在实验数据较少的情况下,如果我们直接用极大似然估计,二项分布的参数可能会出现过拟合的现象。比如,扔硬币三次都是正面,那么最大似然法预测以后的所有抛硬币结果都是正面。为了避免这种情况的发生,可以考虑引入先验概率分布p(μ)p(\mu)来控制参数μ\mu,防止过拟合现象的发生。那么我们应该如何选择p(μ)p(\mu)

前面我们提到,先验概率和后验概率的关系为:
posterior=likelihoodpriorposterior = likelihood * prior

二项分布的似然函数为:μm(1μ)n\mu^m (1-\mu)^n
如果选择的先验概率p(μ)p(\mu)也是μ\mu(1μ)(1-\mu)次方乘积的关系,那么后验概率的分布形式与先验将一样,这样先验概率与后验概率就是共轭分布了。

由第三部分,我们知道Beta分布的概率密度函数为:
Beta(μ,α,β)=Γ(α+β)Γ(α)Γ(β)xα1(1x)β1Beta(\mu|, \alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha -1}(1-x)^{\beta -1}
正好满足我们上面的要求!所以说,Beta分布式二项式分布的共轭先验!

5.多项式分布

将二项式分布推广到多项式分布(Multinomial Distribution),二项式分布式n次伯努利实验,规定了每次的实验结果只有两个。现在还是做n次实验,只不过每次实验的结果变成了m个,且m个结果发生的概率互斥且和为1,则发生其中一个结果X次的概率就是多项式分布。
扔骰子是典型的多项式分布。骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有k次都是点数6朝上的概率就是
P{X=k}=Cnkp6k(1p6)nk,k=0,1,2, ,nP\{X = k\} = C_n ^ k p_6 ^ k(1 - p_6) ^ {n-k}, k = 0, 1, 2, \cdots, n

而多项式分布的一般概率质量函数为:
P{x1,x2, ,xk}=n!m1!m2!mk!i=1npimi,i=0npi=1P\{x_1, x_2, \cdots,x_k\} = \frac{n!}{m_1!m_2!\cdots m_k!}\prod_{i=1}^n p_i ^{m_i}, \sum_{i=0} ^n p_i = 1
将试验进行N次,记第i种可能发生的次数为mim_iikmi=n\sum_i ^ k m_i = n

简单推导一下概率质量函数的推导:
k种独立的取值可能,n次实验,每种可能的概率为p1,p2, ,pkp_1, p_2, \cdots, p_k
则第一种被选中m1m_1次,第二种被选中m2m_2次,第k种被选中mkm_k次的概率为:

Cnm1p1m1Cnm1m2p2m2Cnm1m2mk1mkpkmkC_n^{m_1}p_1^{m_1}C_{n-m_1}^{m_2}p_2^{m_2}\cdots C_{n-m_1-m_2-\cdots-m_{k-1}}^{m_k}p_k^{m_k}
展开既可以得到上面的结果。

6.Dirichlet狄利克雷分布

前面我们讲到Beta分布式二项式分布的共轭先验,Dirichlet分布则是多项式分布的共轭先验。
Dirichlet(狄利克雷)同时可以看做是将Beta分布推广到多变量的情形。概率密度函数定义如下
Dir(pα)=1B(α)k=1Kpkαk1Dir(\vec p|\vec \alpha) = \frac{1}{B(\vec \alpha)} \prod_{k=1}^{K}p_{k}^{\alpha_{k}-1}
其中,α=(α1,α2,,αK)\vec \alpha = (\alpha_{1},\alpha_{2},\ldots,\alpha_{K})为Dirichlet分布的参数。且有:
α1,α2,,αK>0\alpha_{1},\alpha_{2},\dots,\alpha_{K} > 0

B(α)B(\vec \alpha)表示 Dirichlet分布的归一化常数
B(α)=k=1Kpkαk1 dpB(\vec \alpha)=\int \prod_{k=1}^{K}p_{k}^{\alpha_{k}-1} \ d\vec p

类似于Beta函数有以下等式成立:
B(α)=Γ(k=1Kαk)k=1KΓ(αk)B(\vec\alpha) = \frac{\Gamma(\sum_{k=1}^{K}\alpha_{k})}{\prod_{k=1}^{K}\Gamma(\alpha_{k})}

Dirichlet分布的期望为:
E(p)=(α1k=1Kαk,α2k=1Kαk,,αKk=1Kαk)E(\vec p) = (\frac{\alpha_{1}}{\sum_{k=1}^{K}\alpha_{k}},\frac{\alpha_{2}}{\sum_{k=1}^{K}\alpha_{k}},\ldots,\frac{\alpha_{K}}{\sum_{k=1}^{K}\alpha_{k}})

参考文献:
1.https://blog.csdn.net/a358463121/article/details/52562940 带你理解beta分布
2.https://zh.wikipedia.org/wiki/Β分布
3.https://zh.wikipedia.org/wiki/伽玛分布
4.https://zh.wikipedia.org/wiki/Β函数
5.https://blog.csdn.net/Michael_R_Chang/article/details/39188321
6.https://cosx.org/2013/01/lda-math-beta-dirichlet/ LDA-math - 认识 Beta/Dirichlet 分布
7.https://zhuanlan.zhihu.com/p/31470216 一文详解LDA主题模型

展开阅读全文

没有更多推荐了,返回首页