算法:PCA的理解

PCA(主成分分析)通过求协方差矩阵的特征值和特征向量实现数据降维。步骤包括数据零均值化、计算协方差矩阵、对角化协方差矩阵等。特征值越大,对应的特征向量方向上的方差和信息量越大。通过选取大特征值的特征向量,PCA能减少数据量的同时保留主要信息。
摘要由CSDN通过智能技术生成

PCA算法步骤总结:

设有m条n维数据,这里比较糊涂就是按行组织样本还是按列组织样本,下面是按行组织样本:
1)将原始数据按行组成n行m列矩阵X,代表有n个数据,每个数据m个特征
2)将X的每一列(代表一个属性字段)进行零均值化,即减去这一列的均值
3)求出协方差矩阵C=1/n* XXT(不同维度之间的协方差,而不是不同样本之间
4)求出协方差矩阵的特征值及对应的特征向量
5)将特征向量按对应特征值大小从上到下按列排列成矩阵,取前k列组成矩阵P
6)Y=XP即为降维到k维后的数据

A  协方差矩阵的定义:

对n个维度,任意两个维度都计算一个协方差,组成矩阵,定义如下

 

 

直观的对于一个含有x,y,z三个维度的样本,协方差矩阵如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值