SphereFace算法详解

SphereFace是一种用于人脸识别的深度学习算法,它引入了Angular Softmax Loss(A-softmax loss),改进了传统的softmax loss。A-softmax loss通过约束权重向量的模为1和偏置为0,使分类决策仅依赖于特征向量和权重之间的角度。这种方法增加了类别间的angular margin,提高了人脸识别的性能。论文中通过对比实验展示了A-softmax loss相对于softmax和modified softmax loss的优势。
摘要由CSDN通过智能技术生成

论文:SphereFace: Deep Hypersphere Embedding for Face Recognition
论文链接:https://arxiv.org/abs/1704.08063
代码地址:https://github.com/wy1iu/sphereface

这篇是CVPR2017的文章,用改进的softmax做人脸识别,改进点是提出了 angular softmax loss(A-softmax loss)用来改进原来的softmax loss。如果你了解large margin softmax loss(作者和A-softmax loss是同一批人),那么A-softmax loss简单讲就是在large margin softmax loss的基础上添加了两个限制条件||W||=1和b=0,使得预测仅取决于W和x之间的角度。

Figure2中展示的是用一个CNN网络提取特征,然后将提取到的特征在类别间的分布展示出来。(a)和(b)是softmax loss的结果;(c)和(d)是限制W1和W2向量的模等于1,而且b1和b2偏置等于0,称为modified softmax loss;(e)和(f)是本文的angular softmax loss,后面详细介绍。接下来介绍Figure2图的含义:图中特征是2维的,对应横坐标,毕竟二维的容易观察,这可以通过将最后一个提特征层(假设最后一个特征提取层是卷积层,那么就将卷积核数量设置为2)就能得到,因此对于一张输入图像,就能得到1*2维度的特征向量,就可以在二维坐标空间中画出来这个点了,对应Figure2(a)、(c)、(e)中的点。最后接一个全连接层,对于Figure2中的二分类而言(一个类别是黄色点,另一个类别是红色点),全连接层的维度就是2*2,后面一个2就是类别的意思。再看看(b),W1和W2分别是I*2的向量,合在一起就是2*2的全连接层参数,因此W1和W2的箭头位置所在的坐标就是1*2向量的值,这样就可以画出图中的红色箭头了,至于中间的红色线,就是分类界限。同理(d)中W1和W2的模等于1,特征点之所以类似圆形是将(c)中的特征点变换成模为1的特征点;(e)、(f)的含义和(c)、ÿ

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值