算法
君莫笑xxx
积累简介中
展开
-
opencv440+contirb+build_opencv_world报错解决
问题:cmake中,勾选build_opencv_world则会在vs编译中发生以下错误:This file was generated by a older version of protoc which is incompatible with your Protocol Buffer headers.cannot open input file '..\..\lib\Release\opencv_world440.lib'。cmake不勾选build_opencv_world则可以在vs里编译原创 2020-08-04 11:21:18 · 2389 阅读 · 4 评论 -
目标检测综述20年(1999~2019)
参考:《Object Detection in 20 Years: A Survey》 对错误检测的微调 模型的偏差:准确度模型方差:拟合度弱分类器偏差高,方差小强分类器偏差低,方差大Boosting:多个弱分类器串联,降低偏差Bagging:多个强分类器并联,降低方差可利用特征信息:上下文信息(对象间信息、目标邻域信息、空间位置等信息、局部位置)、纹...原创 2020-02-21 11:34:55 · 2331 阅读 · 0 评论 -
Dijkstra算法实现C++
先占个坑:开启算法笔记迪杰斯特拉(Dijkstra)算法是典型的最短路径算法,计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层扩展(广度优先搜索思想),直到扩展到终点为止。...原创 2020-09-28 08:57:38 · 433 阅读 · 0 评论 -
windows下caffe自建vs2015工程-classification
辛苦地编译了caffe的工程后(win10+vs2015,happynear的caffe工程:https://github.com/happynear/caffe-windows)编译好,为了能在外部调用生成的libcaffe.lib等库,自建vs2015工程。在caffe已编译好的前提下,happynear的比较简单。以下两个文件为建立工程所需,其余模型需自行下载,或在此链接可下载自...原创 2019-05-28 13:55:01 · 492 阅读 · 0 评论 -
(转)目标检测、识别、分类、特征点的提取
目标检测、识别、分类、特征点的提取 (转) David Lowe:Sift算法的发明者,天才。Rob Hess:sift的源码OpenSift的作者,个人主页上有openSift的下载链接,Opencv中sift的实现,也是参考这个。Koen van de Sande:作者给出了sift,densesift,colorsift等等常用的特征点程...转载 2019-02-25 20:05:21 · 1519 阅读 · 0 评论 -
解析神经网络笔记
PDF下载链接:https://download.csdn.net/download/u014426939/10940198个人笔记,为快速查找或者找不到方向时看看,理论知识建议看CS229,cs231n课程与花书。实践应用篇:目录Chapter 5 数据扩充Chapter 6 数据预处理Chapter 7 参数初始化Chapter 8 激活函数Chapter 9 ...原创 2019-02-18 00:11:11 · 265 阅读 · 0 评论 -
tensorflow 实现SSD+YOLO
话不多说,记录一下目标检测:SSD 与 YOLO的实现,附训练好的模型,python(注:程序里选用了GPU,若用CPU则选择在选项中更改一下)SSD:paper:https://arxiv.org/pdf/1512.02325.pdfcode:https://download.csdn.net/download/u014426939/10697935SSD的代码稍微改...原创 2018-09-30 16:07:52 · 996 阅读 · 1 评论 -
HOG(方向梯度直方图)
 结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解:HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检测的特征描述器。这项技术是用来计算局部图像梯度的方向信息的统计值。这种方法跟边缘方向直方图...转载 2018-08-09 15:36:49 · 774 阅读 · 2 评论 -
高斯混合模型--GMM(Gaussian Mixture Model)
高斯混合模型--GMM(Gaussian Mixture Model)原本链接:http://blog.sina.com.cn/s/blog_54d460e40101ec00.html 统计学习的模型有两种,一种是概率模型,一种是非概率模型。 所谓概率模型,是指训练模型的形式是P(Y|X)。输入是X,输出是Y,训练后模型得到的输出不是一个具体的值,而是一系列的概率值(对应于...转载 2018-07-26 22:04:20 · 1809 阅读 · 0 评论 -
目标识别分类
卷积网络的目标识别与分类综述:https://github.com/terryum/awesome-deep-learning-papers原创 2018-01-06 18:56:08 · 1858 阅读 · 1 评论 -
C-COT:Learning Continuous Convolution Operators for Visual Tracking程序问题
Martin Danelljan在ECCV2016发表的论文。在之后的ECO中也有涉及。原创 2017-11-14 18:53:25 · 2804 阅读 · 8 评论 -
朴素贝叶斯(Naive Bayes)
原文链接:http://dayu9.blog.163.com/blog/static/18628907920114135413342/在看Real-Time Object Tracking via Online Discriminative Feature Selection时,涉及到MILT和Naive Bayes的知识,借此机会记录一下。以下是转载内容:俺不是大牛啊转载 2017-09-20 10:16:28 · 410 阅读 · 0 评论