概率论知识回顾(十六):数学期望、中位数的一般化定义

概率论知识回顾(十六)

重点:数学期望、中位数的一般化定义

知识回顾用于巩固知识和查漏补缺。知识回顾步骤:

  1. 查看知识回顾中的问题,尝试自己解答
  2. 自己解答不出来的可以查看下面的知识解答巩固知识。
  3. 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。

知识回顾

  1. 简单概述 R − S R-S RS 积分。
  2. 简单概述数学期望的一般化定义。
  3. 简述中位数定义及其优缺点。

知识解答

  1. 简单概述 R − S R-S RS 积分。
    • 定义:设 g ( x ) g(x) g(x) 是定义在 ( a , b ] (a, b] (a,b] 上的实函数,而 F ∗ ( x ) F^*(x) F(x) 是定义在实数轴上的单调不减,右连续的实函数。(这个符合分布函数的一些定义)。取分点 a = x 0 &lt; x 1 &lt; ⋯ &lt; x n = b a = x_0 &lt; x_1 &lt; \cdots &lt; x_n = b a=x0<x1<<xn=b, 从 ( x i − 1 , x i ) (x_{i-1}, x_i) (xi1,xi) 中取一点 x i − 1 &lt; x ~ i &lt; x i x_{i-1}&lt;\tilde{x}_i &lt; x_i xi1<x~i<xi , 记 σ = ∑ i = 1 n g ( x ~ i ) [ F ∗ ( x i ) − F ∗ ( x i − 1 ) ] \sigma = \sum_{i=1}^{n}g(\tilde{x}_i)[F^*(x_i) - F^*(x_{i-1})] σ=i=1ng(x~i)[F(xi)F(xi1)] 。如果有 λ = max ⁡ 1 ≤ i ≤ n ( x i − x i − 1 ) → 0 \lambda = \max_{1\le i\le n}(x_i - x_{i-1}) \rightarrow 0 λ=max1in(xixi1)0 以及 σ \sigma σ 的极限存在,则称此极限为 g ( x ) g(x) g(x) ( a , b ] (a, b] (a,b] 上关于函数 F ∗ ( x ) F^*(x) F(x) R − S R-S RS 积分。记为 ∫ a b g ( x ) d F ∗ ( x ) \int_{a}^{b}g(x)dF^*(x) abg(x)dF(x)
    • 当然,当 a → − ∞ , b → + ∞ a \rightarrow -\infty, b \rightarrow+\infty a,b+ 的时候呢, σ \sigma σ 的极限存在,就记为 g ( x ) g(x) g(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+) 上关于函数 F ∗ ( x ) F^*(x) F(x) R − S R-S RS 积分,记作 ∫ − ∞ + ∞ g ( x ) d F ∗ ( x ) \int_{-\infty}^{+\infty}g(x)dF^*(x) +g(x)dF(x)
    • 另一方面,取 F ∗ ( x ) 为 F ( x ) F^*(x) 为 F(x) F(x)F(x), 假设 F ( x ) F(x) F(x) 为分布函数, f ( x ) f(x) f(x) 为密度函数,则有 ∫ a b g ( x ) d F ( x ) = ∫ a b g ( x ) f ( x ) d x \int_{a}^{b}g(x)dF(x) = \int_{a}^{b}g(x)f(x)dx abg(x)dF(x)=abg(x)f(x)dx。推广到 − ∞ , + ∞ -\infty, +\infty ,+ 上和第二点类似。
    • 另外定义在 ( a , b ] (a, b] (a,b] 上的 R − S R-S RS 积分是不包含 a a a 点的 ,这个是需要严格区分的,因为就期望计算来说,由于就离散随机变量来说,在某点的概率不一定为零。
    • 性质
      • $\int_{a}^{b}[\alpha g_1(x) + \beta g_2(x)]dF^(x) = \alpha\int_{a}^{b}g_1(x) dF^(x) + \beta\int_{a}^{b} g_2(x)dF^*(x) $
      • ∫ a b g ( x ) d [ α F 1 ∗ ( x ) + β F 2 ∗ ( x ) ] = α ∫ a b g ( x ) d F 1 ∗ ( x ) + β ∫ a b g ( x ) d F 2 ∗ ( x ) \int_a^b g(x)d[\alpha F_1^*(x) + \beta F_2^*(x)] = \alpha\int_a^bg(x)dF_1^*(x) + \beta \int_a^bg(x)dF_2^*(x) abg(x)d[αF1(x)+βF2(x)]=αabg(x)dF1(x)+βabg(x)dF2(x)
      • g ( x ) = 1 g(x) = 1 g(x)=1 时, R − S R-S RS 积分为 ∫ a b d F ( x ) = P { a &lt; x ≤ b } \int_a^bdF(x) = P\{a &lt; x \le b\} abdF(x)=P{a<xb}
        • 由这一个特性,我们就知道 P { X ∈ D } = ∫ D d F ( x ) P\{X \in D\} = \int_DdF(x) P{XD}=DdF(x)
        • P { ( X , Y ) ∈ D } = ∬ D d F ( x , y ) P\{(X, Y) \in D\} = \iint_DdF(x, y) P{(X,Y)D}=DdF(x,y)
  2. 简单概述数学期望的一般化定义。
    • 首先我们来看看数学期望的定义 ∑ i p i x i \sum_ip_ix_i ipixi,由于概率密度并不一定是都存在,而无论是离散随机变量函数连续随机变量 p i = F ( x i ) − F ( x i − 0 ) p_i = F(x_i) - F(x_i - 0) pi=F(xi)F(xi0)
    • 我们来看看 R − S R-S RS 积分的形式: σ = ∑ i = 1 n g ( x ~ i ) [ F ∗ ( x i ) − F ∗ ( x i − 1 ) ] \sigma = \sum_{i=1}^{n}g(\tilde{x}_i)[F^*(x_i) - F^*(x_{i-1})] σ=i=1ng(x~i)[F(xi)F(xi1)], 当 λ = max ⁡ 1 ≤ i ≤ n ( x i − x i − 1 ) → 0 \lambda = \max_{1\le i\le n}(x_i - x_{i-1}) \rightarrow 0 λ=max1in(xixi1)0 的时候, F ∗ ( x i ) − F ∗ ( x i − 1 ) = p i F^*(x_i) - F^*(x_{i-1}) = p_i F(xi)F(xi1)=pi, 而当这里的 g ( x ~ i ) = x i g(\tilde{x}_i) = x_i g(x~i)=xi 的时候。就是我们数学期望的公式。
    • 因此我们有: 假设随机变量 X X X 的分布函数为 F ( x ) F(x) F(x) 如果有 ∫ − ∞ + ∞ ∣ x ∣ d F ( x ) &lt; + ∞ \int_{-\infty}^{+\infty}|x|dF(x) &lt; +\infty +xdF(x)<+ 那么就定义 E ( X ) = ∫ − ∞ + ∞ x d F ( x ) E(X) = \int_{-\infty}^{+\infty}xdF(x) E(X)=+xdF(x)
    • 对于随机变量的函数的数学期望,就有 E ( Y ) = E g ( x ) = ∫ − ∞ + ∞ y d F Y ( y ) = ∫ − ∞ + ∞ g ( x ) d F ( x ) E(Y) = Eg(x) = \int_{-\infty}^{+\infty}ydF_Y(y) = \int_{-\infty}^{+\infty} g(x)dF(x) E(Y)=Eg(x)=+ydFY(y)=+g(x)dF(x)
    • 同理,对于n维随机变量,则有:如果 ∫ − ∞ + ∞ ⋯ ∫ − ∞ + ∞ ∣ g ( x 1 , x 2 , ⋯ &ThinSpace; , x n ) ∣ d F ( x 1 , x 2 , ⋯ &ThinSpace; , x n ) &lt; + ∞ \int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}|g(x_1, x_2, \cdots, x_n)|dF(x_1, x_2, \cdots, x_n) &lt; + \infty ++g(x1,x2,,xn)dF(x1,x2,,xn)<+, 则 E g ( x 1 , ⋯ &ThinSpace; , x n ) = ∫ − ∞ + ∞ ⋯ ∫ − ∞ + ∞ g ( x 1 , x 2 , ⋯ &ThinSpace; , x n ) d F ( x 1 , x 2 , ⋯ &ThinSpace; , x n ) Eg(x_1, \cdots, x_n) = \int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}g(x_1, x_2, \cdots, x_n)dF(x_1, x_2, \cdots, x_n) Eg(x1,,xn)=++g(x1,x2,,xn)dF(x1,x2,,xn)
  3. 简述中位数定义及其优缺点。
    • 对于中位数 x x x 来说,有 P { X ≤ x } ≥ 1 2 , P { X ≤ x } ≥ 1 2 P\{X \le x\} \ge \frac 1 2, P\{X \le x\} \ge \frac 1 2 P{Xx}21,P{Xx}21
    • 优点:不受数据中某些特别大或者特别小的值得影响,具有一些代表性
    • 缺点:
      • 没有数学期望那样的可计算性的性质,不利于在数学上的处理。只能单独表示某些属性。
      • 中位数可以不唯一,同时也可能是一个无意义的值。
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值