手推记录-logistic regression (逻辑斯蒂回归)

先看线性回归

hθ(x)=θ0x0+θ1x1++θnxn=θTx h θ ( x ) = θ 0 x 0 + θ 1 x 1 + ⋯ + θ n x n = θ T x

这里的n表示该样本有n维特征。
目标函数

J(θ)=12i=1m(hθ(x(i))y(i))2 J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2

这里的i表示第i个样本。
为了求目标函数最小,采用梯度下降迭代,为了方便,假设只有一个样本

θiJ(θ)=θi12(hθ(x)y)2=(hθ(x)y)θi(hθ(x)y)=(hθ(x)y)θi(θ0x0+θ1x1++θixi++θnxny)=(hθ(x)y)xi ∂ ∂ θ i J ( θ ) = ∂ ∂ θ i 1 2 ( h θ ( x ) − y ) 2 = ( h θ ( x ) − y ) ∗ ∂ ∂ θ i ( h θ ( x ) − y ) = ( h θ ( x ) − y ) ∗ ∂ ∂ θ i ( θ 0 x 0 + θ 1 x 1 + ⋯ + θ i x i + ⋯ + θ n x n − y ) = ( h θ ( x ) − y ) ∗ x i

参数 θi θ i 更新,

θi:=θiαθiJ(θ)=θiα(hθ(x)y)xi θ i := θ i − α ∂ ∂ θ i J ( θ ) = θ i − α ( h θ ( x ) − y ) ∗ x i

在m个样本的情况下,

θi:=θiα1mj=1m(hθ(x(j))y(j))x(j)i θ i := θ i − α 1 m ∑ j = 1 m ( h θ ( x ( j ) ) − y ( j ) ) ∗ x i ( j )

这样的梯度下降 每次更新都需要所有样本,称为批梯度下降。当样本数量多的时候,训练慢

随机梯度下降法:它的具体思路是在更新每一参数时都使用一个样本来进行更新,

forj=1θitom:=α(hθ(x(j))y(j))x(j)i f o r j = 1 t o m : θ i = α ( h θ ( x ( j ) ) − y ( j ) ) ∗ x i ( j )

但是随机梯度下降法不能得到最优解,只会在最优解附近徘徊
局部加权线性回归,将目标函数添加权值修改为,

J(θ)=12i=1mw(i)(hθ(x(i))y(i))2 J ( θ ) = 1 2 ∑ i = 1 m w ( i ) ∗ ( h θ ( x ( i ) ) − y ( i ) ) 2

其中,

w(i)=exp((x(i)x)22τ2)τ w ( i ) = e x p ( − ( x ( i ) − x ) 2 2 τ 2 ) , τ 是 波 长 函 数 , 控 制 权 值 下 降 速 率

(x(i)x) ( x ( i ) − x ) 很小的时候, w(i) w ( i ) 接近1,反之接近0。也就是说,距离x越近的样本 x(i) x ( i ) 获得的权值越高。

解释一下为什么用误差的平方和作为目标函数,
首先,

y(i)=θTx(i) y ( i ) = θ T x ( i )

但是由于会有误差,所以还要加上一个误差项,

y(i)=θTx(i)+ξi y ( i ) = θ T x ( i ) + ξ i

根据中心极限定理,由于误差项是好多好多相互独立的因素影响的综合影响,我们有理由假设其服从高斯分布,而且均值是0,方差为某个定值 δ2 δ 2
因此,概率密度函数为,

P(ξi)=12πδexp(ξ2i2δ2) P ( ξ i ) = 1 2 π δ e x p ( − ξ i 2 2 δ 2 )

也就是,

P(y(i)|x(i);θ)=12πδexp((y(i)θTx(i))22δ2) P ( y ( i ) | x ( i ) ; θ ) = 1 2 π δ e x p ( − ( y ( i ) − θ T x ( i ) ) 2 2 δ 2 )

在给定一个 θ θ ,在 x(i) x ( i ) 的情况下,类别为 y(i) y ( i ) 的概率。
误差项又是相互独立的,那么 ξi ξ i 似然函数,

L(θ)=p(y|x;θ)=i=1mP(y(i)|x(i);θ)=i=1m12πδexp((y(i)θTx(i))22δ2) L ( θ ) = p ( y | x ; θ ) = ∏ i = 1 m P ( y ( i ) | x ( i ) ; θ ) = ∏ i = 1 m 1 2 π δ e x p ( − ( y ( i ) − θ T x ( i ) ) 2 2 δ 2 )

对数似然,

logL(θ)=logi=1m12πδexp((y(i)θTx(i))22δ2)=mlog12πδ+i=1m(y(i)θTx(i))22δ2 l o g L ( θ ) = l o g ∏ i = 1 m 1 2 π δ e x p ( − ( y ( i ) − θ T x ( i ) ) 2 2 δ 2 ) = m l o g 1 2 π δ + ∑ i = 1 m − ( y ( i ) − θ T x ( i ) ) 2 2 δ 2

为了使 l(θ) l ( θ ) 极大,也就是让 (y(i)θTx(i))22=J(θ) ( y ( i ) − θ T x ( i ) ) 2 2 = J ( θ ) 极小,这也就是损失函数。

逻辑斯蒂回归是一个分类算法,以二分类为例, y{0,1} y ∈ { 0 , 1 } ,有了线性回归的基础,那么逻辑斯蒂回归就是要让 hθ(x) h θ ( x ) 的值在0~1闭区间。即,

hθ(x)=g(hθ(x))=11+eθTx h θ ( x ) = g ( h θ ( x ) ) = 1 1 + e − θ T x

其中 g g 函数称为logistic函数,或者sigmoid函数。
y取1的概率等于hθ(x),取0的概率为 1hθ(x) 1 − h θ ( x ) ,即,

p(y|x;θ)=hθ(x)y(1hθ(x))1y p ( y | x ; θ ) = h θ ( x ) y ( 1 − h θ ( x ) ) 1 − y

似然函数,

L(θ)=p(y|x;θ)=i=1mP(y(i)|x(i);θ)=i=1mhθ(x(i))y(i)(1hθ(x(i)))1y(i) L ( θ ) = p ( y | x ; θ ) = ∏ i = 1 m P ( y ( i ) | x ( i ) ; θ ) = ∏ i = 1 m h θ ( x ( i ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i )

对数似然,

l(θ)=logL(θ)=i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i))) l ( θ ) = l o g L ( θ ) = ∑ i = 1 m y ( i ) l o g h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) )

梯度下降法 ,参数迭代,

θi:=θi+α1mj=1m(y(j)hθ(x(j)))x(j)i θ i := θ i + α 1 m ∑ j = 1 m ( y ( j ) − h θ ( x ( j ) ) ) ∗ x i ( j )

线性回归和逻辑斯蒂回归迭代方式表面上一模一样,但是 hθ h θ 函数并不相同。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值