“好”图表的标准是什么?
很多读者曾研习过国际可视化标准和方法论,标准和技巧可以罗列出数百条,但当在工作中应用时,又很难在脑海里一一闪过每条细则。最后判断是否达成一张好图表,往往还得凭借个人经验。
比起基于标准规范式的方法论,基于原则的判断逻辑,往往能以更宏观的方式做出判断。大师兄今天就给大家介绍GLAD原则,它既可以帮我们筛选出好图表,更能为可视化图表的优化指明方向。
1、GLAD原则
马世权老师在「乐见数据:商业数据可视化思维」里提出,一个成功的商业数据可视化要满足两要素:
提供足够的商业价值
帮助读者快速理解信息
那么满足以下GLAD原则的图表,即为好的可视化图表。
G(Good Data and Insight):发现好数据与好洞察
L(Less Noise):降噪,简约至上
A(Accurate Expression):精准表达,提升数据表达的准确度
D(Distinct Mark):画龙点睛,突出洞察信息的标识
于是我们可以根据下图中的评分标准,对可视化图表进行评分,满分10分,得分越高评价越高!
2、根据GLAD原则优化一张看板
下面,我们尝试利用 GLAD 原则对一张员工离职流动可视化看板进行优化。
优化前:
优化后:
G原则(好数据与好洞察)
数据类别的使用是否恰当?
员工流动、流失混为一体;指标晦涩难懂,内容复杂混乱。如下图所示:
(优化前)
指标简化,只关注员工流失,不关注员工流动,去掉难理解的指标。如下图所示:
(优化后) (优化后)
数据指标的使用是否恰当?
比如,在职人数为时间点指标,离职人数为时间段指标,时间段指标与时间点指标混淆不清。这时可以将时间度量统一,都修改为时间段指标。如下图所示:
(优化前—>优化后)
L原则(降噪)
是否会分散注意力,增加读者的视觉负担?
下图中存在两处问题:
标注为图例形式,需要一一对照查看
数据信息需要点击才能查看
(优化前)
优化:
标注改成标签形式,和图表近距离关联
数据设置为直接展现的形式,并非点击后显示
(优化后)
颜色是否有干扰,是否直观?
图表系列都是一样的颜色,平平无奇,没有重点。可以修改系列色为蓝色渐变,颜色和健康度大小匹配,健康度越低,颜色越深。如下图所示:
(优化前—>优化后)
是否有重复性内容,增加读者视觉负担?
如下图,图例、标题重复内容较多:
(优化前)
则可以去掉重复内容:
(优化后) (优化后)
A原则(精准表达)
选择的图表是否合适?
五个指标量,看哪个量影响最大,选择的堆积柱状图不易懂。这时可以更换图表类型为雷达图,更直观地看出问题。
(优化前—>优化后)
数据的密度是否过高或过低?
2 种坐标轴,4 个指标,指标多于 3 个
36 个月的数据,数据量太多
(优化前)
优化:
删掉流动性指标,只保留流失指标
数据量控制为一年 12 个数据点
(优化后)
D原则(画龙点睛)
图表整体平平无奇,无灵魂,没有重点关注,没有故事
优化前:饼图只有一个饼
优化后:通过颜色和闪烁突出饼图中占比最大的系列,显示主要矛盾
(优化前)
(优化后)
优化前:柱状图折线图只有柱子和线
优化后:给柱状图加预警线,超过预警线红色显示;离职人数最大的月份突出显示。
(优化前)
(优化后)
优化前:条形图看不出任何区别
优化后:系列修改为渐变色,颜色越深,健康度越低,低于一定健康度后红色标注提示。
(优化前—>优化后)
对照GLAD原则逐个修改,这样,一张员工离职流动可视化看板就优化好了~
我是帆软软件,关注我可定期收获企业数据化建设案例以及大数据前沿技术、创新思维。