近年来,电商行业进入了高度内卷化的红海阶段,如何通过数据分析实现库存管理的精细化,成为企业提升竞争力的关键。本篇文章将结合实际案例和理论模型,从双十一现象、库存指标拆解、库存管理四大典型场景到行业痛点与解决方案,全面剖析电商库存管理的最佳实践。
更多详细内容,推荐下载《电商数字化解决方案》:
https://s.fanruan.com/hxce0
分享行业真实的数字化转型案例,提供完整数字化解决方案!
一、电商行业的背景变化:从粗放到精细化运营
1. 电商行业现状
1)消费时代转型
- 以“双十一”为代表的大促活动见证了电商行业从高速增长迈入理性竞争阶段。一个高速增长的电商消费时代结束,全域平台回归理性竞争。对于商家来说,如何提高自身经营效率,科学决策成为成熟期电商的决胜因素。
- 根据国家邮政局和星图数据,近年来虽然物流揽收量有所增加,但实际销售额的增长趋于平稳甚至有所下滑,利润压力显著上升。
2)市场内卷与挑战
- 大众消费品市场出现了明显的消费意愿下降的现象, 消费降级现象明显,消费者信心指数持续走低。
- 许多消费品公司采用提质降价、提升自身性价比的方式来应对市场变化。在此过程中消费品行业展现出一定与制造业相似的不断提效降价的特征,陷入 “内卷”。
2. 未来电商的经营策略重点
1)精细化运营成为必然
随着商品为主导阶段和流量红利阶段的结束,电商企业需要以数据为驱动,通过精细化运营策略提升消费者体验和市场竞争力。精细化运营有以下三个特点:
- 数据驱动决策:精细化运营离不开数据的支持。电商企业会深度挖掘和分析用户数据、商品数据、订单数据等。
- 用户个性化体验:根据用户偏好推送商品、内容等,为用户推荐他们可能感兴趣的商品和促销活动。
- 细分运营策略: 无论是商品运营、用户运营还是营销推广,都采用细分策略。
要实现电商精细化运营,需要全面收集和分析数据、刻画精准的用户画像、确定精细的商品分类和从已有市场拓展新需求。
2)降本增效中库存管理亦为关键动作
库存管理在电商全流程管理中起到关键连接作用。通过对呆滞库存和库存周转的分析,反向指导采购决策,优化商品选择和补货频率,同时识别上升商品以支持运营策略。
库存管理贯穿选品、营销、下单、物流发货和售后服务五大环节,助力实现全链路数据分析的打通,从而提升企业的运营效率和决策能力。这就要求企业的库存管理体系由粗放管理转向数据驱动,实现库存管理的精细化运营。
二、电商库存管理的重要性
在电商全流程管理中,库存管理直接影响到选品、营销、物流和售后等关键环节:
- 对企业管理层: 关注成本控制、库存周转速度及风险防范。
- 成本控制:库存成本包括采购成本、存储成本、缺货成本等, 老板会关注如何在保证商品供应的前提下,降低这些成本, 提高企业的盈利能力。
- 整体运营效率:库存周转速度 是否能够满足销售需求,以及是否会因为库存问题导致订单处理延迟。
- 风险防范:关注库存的风险, 如市场需求变化、商品积压、 缺货等风险。
- 对采购与运营团队: 实现销售与库存的动态平衡,识别爆款和上升品。
- 销售与库存的平衡:采购和运营人员需要保持实时沟通,确保库存数量能够满足销售需求,同时避免过度库存。
- 商品的可销售性:关注库存中的商品是否能够正常销售,包括商品的质量、保质期、是否符合市场需求等。
- 爆品及上升品识别:对爆款品种进行及时监控和复盘,对上升品进行识别并及时的补货。
- 对仓储管理: 确保库存准确性,提高出入库效率。
- 库存准确性:仓库管理员要确保库存系统中的数据与实际库存数量完全一致,防止库存不准导致超卖。
- 仓库空间利用与布局:合理利用仓库空间,优化仓库布局,能够提高仓库的存储效率和货物的出入库速度。
- 货物的保管与安全:负责库存货物的安全,减少发货过程中的损耗,降低损耗率。
三、电商分析指标拆解逻辑详解
数据分析指标的拆解是精细化运营的基础,但由于不同部门对核心指标的定义和解读存在差异,导致指标统一性成为难题。无论工具如何选择,关键在于确保指标具有统一性和一致性。
1. 指标
在讲什么是指标体系之前,我们先了解清楚什么是指标。通俗来说,指标是用于衡量事物发展程度的方 法,一般用数据表示,被广泛用于衡量目标。例如:人数、收入、利润、升学率等。简单来说就是将某 个事件量化,且形成数字,从而衡量目标,在日常工作中大家都会应用到。 指标主要由维度、汇总方式、量度三要素构成:
- 维度:是看待事物的视角与方向,决定了从什么角度衡量指标。
- 汇总方式:是统计汇总数据的方式,例如求和、求均值等,决定了用什么方法去衡量指标。
- 量度:是对一个物理量的测定,通常以数字+计量单位表示,是数据的重要组成部分,用来明确衡量数据的计量单位。
2. 原子指标、派生指标、衍生指标
- 原子指标:基于业务过程的度量值,不可以再进行拆分的指标
- 要素:汇总方式、量度
- 派生指标:派生指标 = 原子指标 + 维度(统计周期 + 业务+ 统计粒度)
- 举例: 最近一周更省份手机品类订单的总额
- 原子指标:订单总额(汇总方式、量度)
- 维度——统计周期:最近一周(限定统计的范围 )
- 维度——业务限定:品类为手机(限定统计范围,相当于SQL中的where条件)
- 维度——统计粒度:省份(定义统计粒度,相当于SQL中的group by)
- 衍生指标:是在一个或多个派生指标的基础上,通过各种逻辑运算符合而成的。比如比率,比例等等类型的指标
3. 用于电商GMV、用户相关的指标体系拆解模型
1)OSM模型
OSM模型(Objective,Strategy,Measurement)的作用是将公司的北极星指标进行策略和二级指标的拆解。可以将北极星指标通过策略落实到各业务部门,同时为了保证各业务部门的策略落地和目标达成,又制定若干个二级指标进行监控和衡量。
以提升GMV为例,运用OSM模型对指标进行拆解:
2)UJM模型
UJM(User Journey Map)模型,代表用户旅程图,其作用是从产品流程或用户生命周期出发,对策略和二级指标进行拆解,从流程上确保目标和策略的实现。UJM 模型可以将策略和二级指标拆解为若干个环节。
4. 库存管理指标该如何拆解?
库存分析需要结合实际业务场景,拆解成细化的指标体系,以下是关键指标:
1)库存管控指标
- 库存周转率: 评估库存使用效率。
- 库存周转率=销售成本/平均库存成本
- 库存周转率=销售单位数量/平均库存单位数量
- 存货周转天数: 衡量库存的流动性。
- 库存周转天数=平均库存成本/每日平均销售库存成本金额
- 库存成本金额: 直接反映库存资金占用。
- 库存商品采购金额之和。
2)发货效率指标
- 24小时揽收及时率
- 发货超时订单比率
- 平均到货时长
3)库存结构指标
- 动销率: 用于判断库存中的活跃商品比例。
- 动销率=(商品累计销售SKU数量/商品库存SKU数量)×100%
- 存销比: 比较库存与销售额的比例。
- 存销比=期末库存金额(or数量)/周期内商品销售金额(or数量)
- 这里的周期可以是周、月、季度等。
- 有效库存占比: 分析真正能够转化为销售的库存比例。
- 有效库存占比=有效库存金额/总库存金额
- 库龄分类: 根据库存积压时间划分清理优先级。
- 各库龄分类(3个月、6个月、12个月…)金额占总库存金额
4)采购执行指标
- 库存满足率: 衡量库存对需求的支持能力。
- 库存满足率=现有库存量/需求总量
- 缺货率与缺货金额占比: 反映因缺货导致的潜在损失。
- 缺货率=在一定周期内有缺货记录的商品品种数量 / 库存商品品种总数量
- 缺货金额占比=缺货商品成本金额/总库存成本金额
- 库存滞销率: 识别长期未动销的库存商品。
- 库存滞销率=滞销商品金额/总库存金额
- 采购成本单价:衡量采购成本。
- 采购成本单价=单品单次采购总金额/单品单次采购总数量
四、电商库存管理的四大典型场景
帆软致力于为广大客户提供电商行业数据分析解决方案服务,针对库存管理这个场景,提出了四种典型的库存分析方法。
1. 商品分类与补货优化
基于帕累托分析法和ABC+XYZ分类法,对商品进行细化分类:
- ABC分类:ABC分类法又称帕累托分析法、ABC分析法,也称之为「80 对 20」规则。分类的核心思想为少数项目贡献了大部分价值。根据商品销售金额和数量划分为重点、次重点和一般类别。分类方法步骤如下:
- 计算每个库存SKU的金额。
- 按照金额从大到小排序。
- 计算每一个SKU金额所占库存总金额的百分比。
- 计算累计百分比。
- 根据累计百分比,划分ABC区间,进行分类。
- XYZ分类:结合商品销售的波动性,进一步细分需求的稳定性。
- 增加销售波动的情况XYZ分类
- X类:X类的特点是随着时间的推移,销售波动较小。在预测时也可以可靠地预测未来需求。
- Y类:Y类的需求不是稳定的,但可以在一定程度上预测需求的变化。这通常是因为需求波动是由已知因素引起的,如季节性、产品生命周期、竞争对手的行为或经济因素等。准确预测Y类的需求比X类更加困难。
- Z类:相互之间的变化很大,甚至需求中会出现零值,即没有需求的情况。Z类的需求可能剧烈波动或偶尔发生,意味着这种产品并非持续有销售,在某些时候甚至完全没有销售。在预测时,Z类没有趋势或可预测的因果关系,因此无法进行可靠的需求预测。
- 如何计算XYZ分类
- 可使用近一年的销售数据,按SKU和月份对销售数量进行汇总;
- 计算每个SKU销量的算术平均数——新增汇总列;
- 计算每个SKU销量的标准差——新增汇总列;
- 通过标准差除以算术平均数,得出变异系数 (Coefficient of Variation, CV);
- 对变异系数按照大小进行排序;
- 根据变异系数的排序,划分XYZ区间,进行分类。
- 一般来说,变异系数在0.5以下的SKU被视为X类,变异系数超过1的被视为Z类,剩下的SKU被视为Y类。
- 增加销售波动的情况XYZ分类
结合ABC+XYZ分类法,采购部门可以根据不同类别的物料制定相应的采购策略,以优化库存管理和降低成本。
例如,对于AX类物料,可以采用JIT(即时制)采购策略,以减少库存持有成本;
对于BY类物料,可以采用混合策略,平衡成本和效率;
对于CZ类物料,可以采用安全库存策略,以应对需求的不确定性。
ABC+XYZ分类法为企业提供了科学的库存管理方法,帮助企业在采购过程中更好地分配资源,降低库存成本,提高运营效率。通过合理运用这一方法,企业能够更加精准地把握库存管理的重点,实现成本控制和业务发展的双重目标。
2. 库龄结构分析
针对没有批次管理的企业,使用倒推法计算库存库龄,以便监控哪些库存需要进行打折促销的,根据库龄结合周转,可以 阶梯式的对商品进行打折,设计不同折扣策略,如促销、清仓等:
有些公司ERP没有实现批次管理,同一个产品不同批次入库的库存是混在一起的,需要从数据计算的逻辑倒推去计算理论上不同批次产品的库龄。我们可以基于入库数据和当前库存数据,通过跨行计算累加入库数量,倒推出理论上的库存分布。
3. 识别上升商品
通过7天销量周期分析,看销量整体上升情况。监控上升品种、监控毛利率。持续监控上升品的销量变化,结合毛利率构建四象限图,为营销和补货决策提供支持:
- 明星产品:高销量、高毛利率。
- 引流品:低毛利率、高销量。
- 利润品:高毛利率、销量一般。
- 动销品:低毛利率、销量一般。
4. 识别滞销商品
- 通过库存周转天数对库存进行打标,并通过参数计算所选时间段销量、近3天销量、近7天销量、近30天销量,对滞销产品库存进行识别,对滞销产品及时进行降价、退货等处理。
- 识别无效商品:通过库龄、呆滞时间、销售数量、退货率、残损率等维度来进行识别无效商品。
- 第一步:结合库龄&呆滞时间&销售数量,综合判断商品是否【疑似无效】
- 库龄=当日-入库日期
- 呆滞天数=当日-最后一次销售时间
- 第二步:核对商品上架记录,判断是否因为没有上架而导致呆滞,如有上架记录,则判定为【无效商品】
- 第一步:结合库龄&呆滞时间&销售数量,综合判断商品是否【疑似无效】
5. 电商库存其他分析常用模型
1)价格段分析法
- 不同单价商品的库存分析:各品类/品牌主流价格带商品的库存,看主流价格带商品是否缺货, 非主流价格带商品是否积累库存。
- 不同标签价格商品的库存分析:各类/品牌不同标签价格的库存,看主流价格带的库存是否充足, 非主流价格带的库存是否积累(单价也与折扣/毛利有关,标签价格有时更能反映问题)。
2)SKU三度分析
- 品类广度:采购的商品类数据是否充足,与行业进行比较。
- SKU宽度:采购的SKU如何丰富,非标产品SKU注重宽度,主流SKU是否采购。
- SKU深度:SKU总数/品类数。
五、结语
电商库存管理的核心在于通过数据驱动实现精细化运营:
- 科学的指标体系和分析模型是提升效率的基础。
- 针对不同场景设计专属的库存管理策略,可显著降低成本和风险。
- 未来,随着数据分析技术的进一步普及,更多企业将能够实现从数据到决策的快速转化。
帆软的解决方案为实现电商库存管理精细化运营提供了技术支持,为电商行业的持续发展注入了新动能。通过全面的库存管理,电商企业不仅能够应对消费市场的挑战,还能在竞争中占据主动。
帆软软件深耕数字行业,能够基于强大的底层数据仓库与数据集成技术,为电商企业梳理指标体系,建立全面、便捷、直观的经营、财务、绩效、风险和监管一体化的报表系统与数据分析平台,并为各业务部门人员及领导提供PC端、移动端等可视化大屏查看方式,有效提高工作效率与需求响应速度。
若想了解更多关于【电商库存管理精细化运营】的解决方案,您可以点击下方组件,快速获得帆软为您提供的定制化方案建议、免费的数据产品试用和同行业标杆案例学习参考。
更多详细内容,推荐下载《电商数字化解决方案》:
https://s.fanruan.com/hxce0
分享行业真实的数字化转型案例,提供完整数字化解决方案!