[论文速览]:Multi-source Domain Adaptation for Semantic Segmentation

Multi-source Domain Adaptation for Semantic Segmentation

[NeurIPS 2019] [2020: MADAN: Multi-source Adversarial Domain Aggregation Network for Domain Adaptation] [github]

目录

Multi-source Domain Adaptation for Semantic Segmentation

Abstract

Problem Setup

MADAN

Overview

Dynamic Adversarial Image Generation

Adversarial Domain Aggregation

Feature-aligned Semantic Segmentation

MADAN Learning


Abstract

Simulation-to-real domain adaptation for semantic segmentation has been actively studied for various applications such as autonomous driving. Existing methods mainly focus on a single-source setting, which cannot easily handle a more practical scenario of multiple sources with different distributions. In this paper, we propose to investigate multi-source domain adaptation for semantic segmentation. Specifically, we design a novel framework, termed Multi-source Adversarial Domain Aggregation Network (MADAN), which can be trained in an end-to-end manner. First, we generate an adapted domain for each source with dynamic semantic consistency while aligning at the pixel-level cycle-consistently towards the target. Second, we propose sub-domain aggregation discriminator and cross-domain cycle discriminator to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and target domain while training the segmentation network. Extensive experiments from synthetic GTA and SYNTHIA to real Cityscapes and BDDS datasets demonstrate that the proposed MADAN model outperforms state-of-the-art approaches.

第一句,研究意义:在自动驾驶等多种应用中,针对语义分割的仿真-真实域适应问题进行了研究。

第二句,提出问题:现有的方法主要集中在单一源域设置上,这很难处理具有不同分布的、多个源的、更实际的场景。

第三句,本文工作:一句话概括本文做的内容,即 提出研究语义分割的多源域适应问题。

第四-七句,算法介绍:本文提出的模型,Multi-source Adversarial Domain Aggregation Network (MADAN),包括三个部分:

First,为每个源生成一个具有动态语义一致性的自适应域,同时在像素级循环上对齐目标;

Second,出了子域聚集判别器和跨域循环判别器,以使不同的适应域更紧密地聚集在一起;

Finally,在训练分割网络的同时,对聚集的域和目标域进行特征级对齐。

第八句,实验结论:从合成的数据集 GTA 和 SYNTHIA 到真实的数据集 Cityscapes 和 BDDS 上的广泛实验表明,所提出的 MADAN 模型优于最先进的方法。

 

Problem Setup

 

 

MADAN

Overview

 

Figure 1: The framework of the proposed Multi-source Adversarial Domain Aggregation Network (MADAN). The colored solid arrows represent generators, while the black solid arrows indicate the segmentation network F. The dashed arrows correspond to different losses.

Dynamic Adversarial Image Generation

Adversarial Domain Aggregation

Feature-aligned Semantic Segmentation

MADAN Learning

 

 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
无监督的多源域自适应是指在没有访问源数据的情况下进行的域自适应方法。为了解释这一概念,首先需要了解两个关键术语的含义:域自适应和多源。 域自适应是指在机器学习和数据挖掘中,将模型从一个域(即数据的分布)迁移到另一个域的过程。域自适应的目标是使模型在目标域上具有更好的性能,而不需要重新训练或收集目标域的数据。 多源是指使用来自多个源领域的数据来进行域自适应。这种情况下,我们有多个源域的数据,但没有目标域的数据。这可能是因为目标域的数据很难收集、昂贵或没有权限访问。 在无监督的多源域自适应中,我们试图使用多个源域的数据来进行迁移学习,从而在没有目标域数据的情况下提高目标域上的性能。这个问题是非常具有挑战性的,因为我们没有标签的目标域数据来指导模型的训练。 一种常见的方法是使用领域间的分布差异来进行特征学习。例如,可以使用深度神经网络来学习源域和目标域之间的有用特征。通过最小化源域和目标域之间的距离,我们可以使网络学习到一组在多个域上通用的特征表示。 另一个方法是使用领域适应的损失函数。这种损失函数通过最大化源域和目标域之间的相似性,或最小化它们之间的差异,来迫使模型在目标域上有更好的性能。 总的来说,无监督的多源域自适应是一种在没有目标域数据的情况下使用多个源域数据进行迁移学习的方法。它可以通过学习通用特征或使用领域适应的损失函数来提高目标域上的性能。这种方法对于许多现实世界的情况是非常有用的,例如在医疗图像诊断和自然语言处理等领域中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值