Review Learning: Advancing All-in-One Ultra-High-Definition Image Restoration Training Method
摘要
一体化图像恢复任务变得越来越重要,特别是对于超高清(UHD)图像。
现有的一体机UHD图像恢复方法通常通过引入针对不同退化类型的即时或定制的动态网络来提高模型的性能。在推理阶段,它可能是友好的,但在训练阶段,由于模型在一个时代遇到多个不同质量的退化图像,这些杂乱的学习目标可能是模型的信息污染。
为了解决这个问题,本文提出了一种新的一般图像恢复模型的训练范式,本文将其命名为Review Learning,它使图像恢复模型能够在没有先验知识和提示的情况下处理多种类型的退化。该方法首先在几个退化数据集上对图像恢复模型进行顺序训练,并结合一种回顾机制,以增强图像恢复模型对以前几类退化数据集的记忆。此外,本文设计了一个轻量级的通用图像恢复网络,它可以有效地推理在单一消费级GPU上具有4K(3840×2160)分辨率的退化图像。
Introduction
近年来,先进的成像传感器和显示器的出现,极大地促进了超高清(UHD)成像技术的发展。然而,UHD图像中像素数量的增加无疑使它们在成像过程中更容易受到多个未知退化的影响。以前的UHD图像恢复方法通常分别处理这些基本的图像退化,包括低光图像增强、去雨、去雪和去模糊,通过使用特定的单任务模型。实际上,本文