# 11.21 DataFrame入门
# coding:utf-8
import numpy as np
import pandas as pd
#先创建一个时间索引,所谓的索引(index)就是每一行数据的ID,可以标识每一行的唯一值
dates = pd.date_range('20171121',periods=6)
print dates
# DatetimeIndex(['2017-11-21', '2017-11-22', '2017-11-23',
# '2017-11-24','2017-11-25', '2017-11-26'],dtype='datetime64[ns]', freq='D')
#为了快速入门,我们看一下如何创建一个6X4的数据:randn函数用于创建随机数,参数标示行数和
#列数,dates是上一步创建的索引列
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
print df
# A B C D
#2017-11-21 1.199444 -0.587739 -1.284239 0.628793
#2017-11-22 0.284111 -1.659375 0.614215 0.359175
#2017-11-23 1.445404 1.354422 -1.065202 0.293943
#2017-11-24 1.134573 0.723428 -1.240231 1.006472
#2017-11-25 2.091592 0.615116 0.420853 -0.394245
#2017-11-26 0.964422 -0.840
pandas:DataFrame入门
最新推荐文章于 2024-09-20 10:34:12 发布
这篇博客介绍了如何使用pandas库创建DataFrame,包括通过时间索引、随机数和字典创建DataFrame,展示了查看数据、描述性统计、转置、排序等基本操作。
摘要由CSDN通过智能技术生成