Python3数据科学包系列(一):数据分析实战


Python3中类的高级语法及实战

Python3(基础|高级)语法实战(|多线程|多进程|线程池|进程池技术)|多线程安全问题解决方案

Python3数据科学包系列(一):数据分析实战

Python3数据科学包系列(二):数据分析实战



认识下数据科学中数据处理基础包:

(1)NumPy


俗话说: 要学会跑需先学会走
(1)数据分析基础认知:
   NumPy是,Numerical Python的简称,它是目前Python数值计算中最为重要的基础包,大多数计算包提供了基于NumPy的科学函数功能;
   将NumPy的数值对象作为数据交换的通用语
NumPy通常用于处理如下场景数据的处理:
   ndarray,是一种高效多维数组,提供了基于数组的便捷算术操作以及灵活的广播功能;
   对所有数据进行快速的计算,而无需编写循环程序
   对硬盘数据进行读写的工具,并对内存映射文件进行操作
   线性代数,随机数生成以及傅里叶变换功能
   用于连接NumPy到C,C++代码库封装,并为这些代码提供动态,易用的接口
在大数据领域,通常更关注的内容如下 :
   在数据处理,数据清洗,构造子集,过滤,变换以及其他计算中进行快速的向量化计算
   常见的数组算法,比如sort,unique以及set操作
   高效的描述性统计和聚合,概述数据
   数据排序和相关数据操作,例如对异构数据进行merge和join
   使用数组表达式来表明条件逻辑,代替if-elif-else条件分支的循环
   分组数据的操作(聚合,变换,函数式操作)
(2)NumPy两大亮点
   NumPy在内部将数据存储在连续的内存地址上,这与其他的Python内建数据结构时不同的。
   NumPy的算法库时C语言编写的,所以在操作数据内存时,不需要任何类型检查或者其他管理操作。
   NumPy数据使用的内存量也小于其他Python内建序列。
   
   NumPy可以针对全量数值进行复杂计算而不需要编写Python循环

一: 数据分析高级语法:序列(Series) 

# -*- coding:utf-8 -*-
from pandas import Series
import pandas as pd

print('-------------------------------------序列Series定义与取值-------------------------------------------')
print("""
   Series序列可以省略,此时索引号默认从0开始;
   索引可以使指定的字母,或者字符串
   Series序列也可以任务是一维列表
   """)
X = pd.Series(["a", 2, "螃蟹"], index=[1, 2, 3])
print("Series数据类型: ", type(X))
print()
print(X)
print()
A = pd.Series([1, 2, 3, 22, 140, 23, 123, 2132131, 232222222222])
print(A)
print()
print("序列A的第二个值: ", A[1])
print()
B = pd.Series([11, 23, 33, 44, 55, 56], index=['A', 'B', 'C', 'D', 'E', 'F'])
print()
print("序列B: ")
print(B)
print()
print(B.__dict__.keys())

print('访问序列的A的值:', B['A'])
print('访问序列的B的值:', B['B'])

print('-------------------------------------------------------------------------------------------------')

print()

AA = pd.Series([14, 24, 53, 33], index=['First', 'Second', 'Three', 'Four'])
print("序列AA")
print(AA)
print()
print("序列AA['Second']的取值: ", AA['Second'])
print("序列AA[1]的取值: ", AA[1])
print()
try:
    print(AA[5])
except IndexError as err:
    print("序列AA索引越界异常: ", err)

N = pd.Series([2], index=['Hello'])
# 给序列追加单个元素,会报错;但可用追加序列
# AA.append(N)
try:
    pd.concat(N)
except TypeError as err:
    print("序列AA追加单个元素异常: ", err)

x = ['上海', '北京', '深圳', '广州', '重庆']
y = ['上海', '北京', '深圳', '广州', '天津']
z = ['天津', '苏州', '成都', '武汉', '杭州']
gdp1 = pd.Series([32679, 30320, 24691, 23000, 20363], index=x)
gdp2 = pd.Series([30133, 28000, 22286, 21500, 18595], index=y)
gdp3 = pd.Series([18809, 18597, 15342, 14847, 13500], index=z)
result = [gdp1, gdp3]
gdp4 = pd.concat(result)
print(gdp4)

运行效果:


D:\program_file_worker\anaconda\python.exe D:\program_file_worker\python_source_work\SSO\grammar\dataanalysis\DataAnalysisExecutorSerias.py 

     俗话说: 要学会跑需先学会走
     (1)数据分析基础认知:
        NumPy是,Numerical Python的简称,它是目前Python数值计算中最为重要的基础包,大多数计算包提供了基于NumPy的科学函数功能;
        将NumPy的数值对象作为数据交换的通用语
     NumPy通常用于处理如下场景数据的处理:
        ndarray,是一种高效多维数组,提供了基于数组的便捷算术操作以及灵活的广播功能;
        对所有数据进行快速的计算,而无需编写循环程序
        对硬盘数据进行读写的工具,并对内存映射文件进行操作
        线性代数,随机数生成以及傅里叶变换功能
        用于连接NumPy到C,C++代码库封装,并为这些代码提供动态,易用的接口
     在大数据领域,通常更关注的内容如下 :
        在数据处理,数据清洗,构造子集,过滤,变换以及其他计算中进行快速的向量化计算
        常见的数组算法,比如sort,unique以及set操作
        高效的描述性统计和聚合,概述数据
        数据排序和相关数据操作,例如对异构数据进行merge和join
        使用数组表达式来表明条件逻辑,代替if-elif-else条件分支的循环
        分组数据的操作(聚合,变换,函数式操作)
     (2)NumPy两大亮点
        NumPy在内部将数据存储在连续的内存地址上,这与其他的Python内建数据结构时不同的。
        NumPy的算法库时C语言编写的,所以在操作数据内存时,不需要任何类型检查或者其他管理操作。
        NumPy数据使用的内存量也小于其他Python内建序列。
        
        NumPy可以针对全量数值进行复杂计算而不需要编写Python循环
        
        
        

-------------------------------------序列Series定义与取值-------------------------------------------

   Series序列可以省略,此时索引号默认从0开始;
   索引可以使指定的字母,或者字符串
   Series序列也可以任务是一维列表
   
Series数据类型:  <class 'pandas.core.series.Series'>

1     a
2     2
3    螃蟹
dtype: object

0               1
1               2
2               3
3              22
4             140
5              23
6             123
7         2132131
8    232222222222
dtype: int64

序列A的第二个值:  2


序列B: 
A    11
B    23
C    33
D    44
E    55
F    56
dtype: int64

dict_keys(['_is_copy', '_mgr', '_item_cache', '_attrs', '_flags', '_name'])
访问序列的A的值: 11
访问序列的B的值: 23
-------------------------------------------------------------------------------------------------

序列AA
First     14
Second    24
Three     53
Four      33
dtype: int64

序列AA['Second']的取值:  24
序列AA[1]的取值:  24

序列AA索引越界异常:  index 5 is out of bounds for axis 0 with size 4
序列AA追加单个元素异常:  first argument must be an iterable of pandas objects, you passed an object of type "Series"
上海    32679
北京    30320
深圳    24691
广州    23000
重庆    20363
天津    18809
苏州    18597
成都    15342
武汉    14847
杭州    13500
dtype: int64

Process finished with exit code 0
 

二:NumPy包的多维数组对象 

首先来看看使用NumPy生成一千万个数据与list列表生成同样多数据耗时情况

# -*- coding:utf-8 -*-

import numpy as np
import time
import datetime

# 获取当前时间
current_time = datetime.datetime.now()
# 格式化输出带有毫秒的当前时间字符串
start_current_time_str = current_time.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
print(start_current_time_str)
my_arr = np.arange(10000000)
print("NumPy生成一千万数据: ", my_arr)
# 获取当前时间
current_time = datetime.datetime.now()
# 格式化输出带有毫秒的当前时间字符串
end_current_time_str = current_time.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]
print(end_current_time_str)

start_time = time.time()
my_list = list(range(10000000))
# print("生成一千万个数据: ", my_list)
end_time = time.time()
print("列表生成1千万个数据耗时: %d 秒" % (end_time - start_time))
print()
print("""
    NumPy核心特质之一就是N-维数值对象---ndarray;
    ndarray是Python中一个快速灵活的大型数据集容器。数值允许你使用类似于标量的操作语法在整块数据上进行数学计算
""")

data = np.random.randn(2, 3)
print("data二维数组: ", data)

dataArray = data * 2
print("dataArray计算结果: ", dataArray)

andData = data + data
print("两个二维data数组相加: ", andData)

print("""
    一个ndarray时一个通用的多维同步数据容器,也就是说,它包含的每一个元素均为
    相同的数据类型。每一个数组都有一个shape属性,用来表征数组每一维度的数量,每一个数组都有一个
    dtype属性,用来描述数组的数据类型
""")
print()
print(data.shape)

print(data.dtype)

print(
    "生成ndarray对象: 通常使用array函数,函数接收任意的序列型对象,当然也包括其他数组;生成一个新的包含传递数据的NumPy数组")

data1 = [7, 2.5, 4, 44, 5, 0.1, 3354]
arrayData = np.array(data1)
print("arrayData: ", type(arrayData))
print(arrayData.dtype)

data2 = [[1, 2, 3, 4, 5], [7, 8, 9, 10, 11]]
array2 = np.array(data2)
print(array2)
print(array2.ndim)
print(array2.shape)
print(array2.dtype)

print("""
   给定长度和形状后,zeros函数会生成全部包含0的数组
""")
zeroArray = np.zeros(10)
print()
print(zeroArray)

zeroArray1 = np.zeros((3, 6))
print(zeroArray1)
print('--------------------------------------------')
zeroArray2 = np.empty((2, 3, 2))
print(zeroArray2)

rangeArray = np.arange(15)
print(rangeArray)
print(type(rangeArray))

print("""
    ndarray的数据类型
""")
array001 = np.array([1, 2, 3], dtype=np.float64)
array002 = np.array([1, 2, 3], dtype=np.int32)

print(array001.dtype)
print(array002.dtype)
print("""
     NumPy数组算术运算
""")
arr = np.array([[1., 2., 3.], [4., 5., 6.]])
print(arr)
print()
arr1 = arr * arr
print(arr1)
print()
arr2 = arr - arr
print(arr2)
print()
arr3 = arr + arr
print(arr3)

arr4 = 1 / arr
print()
print(arr4)
print()
arr5 = arr ** 0.5

print(arr5)

print()

arr22 = np.array([[0., 4., 1.], [7., 2., 12.]])
print(arr22)

arr33 = arr22 > arr
print()
print(arr33)

  运行效果: NumPy比list列表块近1000倍


D:\program_file_worker\anaconda\python.exe D:\program_file_worker\python_source_work\SSO\grammar\dataanalysis\DataAnalysisExecutorNumPy.py 
2023-10-01 13:18:17.923
NumPy生成一千万数据:  [      0       1       2 ... 9999997 9999998 9999999]
2023-10-01 13:18:17.939
.(939-923)=16 毫秒

.

.

.

列表生成1千万个数据耗时: 3 秒

NumPy核心特质之一就是N-维数值对象---ndarray;
    ndarray是Python中一个快速灵活的大型数据集容器。数值允许你使用类似于标量的操作语法在整块数据上进行数学计算

data二维数组:  [[ 0.60773878 -0.67998347 -1.13246668]
 [-0.50485897 -1.38068128 -0.09343696]]
dataArray计算结果:  [[ 1.21547755 -1.35996695 -2.26493337]
 [-1.00971795 -2.76136255 -0.18687392]]
两个二维data数组相加:  [[ 1.21547755 -1.35996695 -2.26493337]
 [-1.00971795 -2.76136255 -0.18687392]]

    一个ndarray时一个通用的多维同步数据容器,也就是说,它包含的每一个元素均为
    相同的数据类型。每一个数组都有一个shape属性,用来表征数组每一维度的数量,每一个数组都有一个
    dtype属性,用来描述数组的数据类型


(2, 3)
float64
生成ndarray对象: 通常使用array函数,函数接收任意的序列型对象,当然也包括其他数组;生成一个新的包含传递数据的NumPy数组
arrayData:  <class 'numpy.ndarray'>
float64
[[ 1  2  3  4  5]
 [ 7  8  9 10 11]]
2
(2, 5)
int32

   给定长度和形状后,zeros函数会生成全部包含0的数组


[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[[0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]]
--------------------------------------------
[[[6.23042070e-307 1.42417221e-306]
  [1.60219306e-306 9.79097008e-307]
  [6.89807188e-307 1.20161730e-306]]

 [[7.56587585e-307 1.37961302e-306]
  [6.23053614e-307 6.23053954e-307]
  [1.37961302e-306 1.42410974e-306]]]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
<class 'numpy.ndarray'>

    ndarray的数据类型

float64
int32

   NumPy数组算术运算

[[1. 2. 3.]
 [4. 5. 6.]]

[[ 1.  4.  9.]
 [16. 25. 36.]]

[[0. 0. 0.]
 [0. 0. 0.]]

[[ 2.  4.  6.]
 [ 8. 10. 12.]]

[[1.         0.5        0.33333333]
 [0.25       0.2        0.16666667]]

[[1.         1.41421356 1.73205081]
 [2.         2.23606798 2.44948974]]

[[ 0.  4.  1.]
 [ 7.  2. 12.]]

[[False  True False]
 [ True False  True]]

Process finished with exit code 0
 

三: 数据分析高级语法: 数据框(DataFrame)


DataFrame表示的是矩阵数据表,它包含已经排序的集合;每一列可以是不同的值类型(数值,字符串,布尔值等)DataFrame既有行索引和列索引,它被视为一个共享相同索引的Series的字典,可以看作是序列Series的容器;在DataFrame中,数据被存储为一个以上的二维块,而不是列表,字典或者其他一维数值的集合;
可以使用分层索引在DataFrame中展示更高维度的数据


# -*- coding:utf-8 -*-

import pandas as pd

print("""
     DataFrame表示的是矩阵数据表,它包含已经排序的集合;
     每一列可以是不同的值类型(数值,字符串,布尔值等)
     DataFrame既有行索引和列索引,它被视为一个共享相同索引的Series的字典,可以看作是序列Series的容器;
     在DataFrame中,数据被存储为一个以上的二维块,而不是列表,字典或者其他一维数值的集合;
     可以使用分层索引在DataFrame中展示更高维度的数据
""")
data = {'state': ['python', 'java', 'C', 'C++', 'C#', 'go'],
        'year': [2000, 2001, 2003, 2004, 2005, 2006],
        'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}

frame = pd.DataFrame(data)
print("frame: ", frame)

print("默认展示前5行: ", frame.head())
print("当然可以指定展示几行: ", frame.head(2))

print("指定排序顺序,DataFrame的列将会按照指定的顺序排序:")
sortFrame = pd.DataFrame(data, columns=['year', 'state', 'pop'])
print("sortFrame: ", sortFrame)
print("如果指定排序的类不存在,此时的数据结构如下: ")

sortNotNullFrame = pd.DataFrame(data, columns=['year', 'state', 'popt'])

print()
print("指定排序顺序的二维数据结构: ", sortNotNullFrame)
print("""
    DataFrame中的一列,可以按照字典标记或属性那样检索为Series序列
""")

frameData = pd.DataFrame(data, columns=['year', 'state', 'pop'])
frameSeries = frameData['state']
print("frameSeries: ", frameSeries)
frameSeries = frameData['year']
print("frameSeries: ", frameSeries)

data = pd.DataFrame(np.random.randn(1000, 4))
print("data: ", data.describe())
print("""
   DataFrame数据框是用于存储多行多列的数据集合,是Series;
   类似于Excel二维表格,对应DataFrame的操作无外乎"增,删,改,查"
""")
dataFrameSeries = pd.DataFrame({'age': Series([26, 29, 24]), 'name': Series(['Ken', 'Jerry', 'Ben'])})
print("dataFrameSeries: ", dataFrameSeries)
print()
A = dataFrameSeries['age']
print(A)
print()
print("""
   获取索引号是第一行的值(其实是第二行,从0开始)
""")
B = dataFrameSeries[1:2]
print(B)
print("-------------------------------------------------------")
print("""
   获取第0行到第二行(不包括)与第0列到第2列(不包括2行)的数据块
""")
C = dataFrameSeries.iloc[0:2, 0:2]
print(C)
print()
D = dataFrameSeries.at[0, 'name']  # 获取第0行与name列的交叉值
print(D)
print()
print("""
  访问某一行的时候,不能仅用行的index来访问,如要访问dataFrameSeries的index = 1的行,
  不能写成dataFrameSeries[1],而要写成dataFrameSeries[1:2] ; DataFrame的index可以使任意的,
  不会像Series那样报错,但会显示"Empty DataFrame",并列出Columns:[列名],执行下面的代码看看结果
""")
dataFrameDo = pd.DataFrame(data={'age': [26, 29, 24], 'name': ['KEN', 'John', 'JIMI']},
                           index=['first', 'second', 'third'])

# 访问行 0-99行
varData = dataFrameDo[1:100]
print(varData)
print()
print(varData[2:2])  # 显示空
print()
print(varData[2:1])  # 显示空

print('----------------------------------------------------------------')
print()
print("访问列")
print(varData['age'])  # 按照列名访问
print()
print(varData[varData.columns[0:1]])  # 按索引号访问
print()
print("访问数据块")
print(varData.iloc[0:1, 0:1])  # 按行列索引访问

print('---------------------------------------------------------------')
# 访问位置
print(dataFrameSeries.at[1, 'name'])  # 这里的1是索引
print(varData.at['second', 'name'])
try:
    print(varData.at[1, 'name'])
except KeyError as err:
    print("如果这里用索引号就会报错,当有索引名时,不能用索引号,异常信息: ", err)

print()
print("修改列名")
dataFrameSeries.columns = ['name1', 'name2']
print(dataFrameSeries[0:1])
print("修改行的索引")
dataFrameSeries.index = range(1, 4)
print(dataFrameSeries)

print("根据行索引删除")
dataFrameSeries.drop(1, axis=0)  # axis =0 是表示行轴,也可以省略
print("根据列名进行删除")
dataFrameSeries.drop('name1', axis=1)  # axis =1 是表示列轴,不可以省略
print(dataFrameSeries)
运行效果:

D:\program_file_worker\anaconda\python.exe D:\program_file_worker\python_source_work\SSO\grammar\dataanalysis\DataAnalysisExecutorPandas.py 

     DataFrame表示的是矩阵数据表,它包含已经排序的集合;
     每一列可以是不同的值类型(数值,字符串,布尔值等)
     DataFrame既有行索引和列索引,它被视为一个共享相同索引的Series的字典,可以看作是序列Series的容器;
     在DataFrame中,数据被存储为一个以上的二维块,而不是列表,字典或者其他一维数值的集合;
     可以使用分层索引在DataFrame中展示更高维度的数据

frame:      state  year  pop
0  python  2000  1.5
1    java  2001  1.7
2       C  2003  3.6
3     C++  2004  2.4
4      C#  2005  2.9
5      go  2006  3.2
默认展示前5行:      state  year  pop
0  python  2000  1.5
1    java  2001  1.7
2       C  2003  3.6
3     C++  2004  2.4
4      C#  2005  2.9
当然可以指定展示几行:      state  year  pop
0  python  2000  1.5
1    java  2001  1.7
指定排序顺序,DataFrame的列将会按照指定的顺序排序:
sortFrame:     year   state  pop
0  2000  python  1.5
1  2001    java  1.7
2  2003       C  3.6
3  2004     C++  2.4
4  2005      C#  2.9
5  2006      go  3.2
如果指定排序的类不存在,此时的数据结构如下: 

指定排序顺序的二维数据结构:     year   state popt
0  2000  python  NaN
1  2001    java  NaN
2  2003       C  NaN
3  2004     C++  NaN
4  2005      C#  NaN
5  2006      go  NaN

 DataFrame中的一列,可以按照字典标记或属性那样检索为Series序列

frameSeries:  0    python
1      java
2         C
3       C++
4        C#
5        go
Name: state, dtype: object
frameSeries:  0    2000
1    2001
2    2003
3    2004
4    2005
5    2006
Name: year, dtype: int64
data:                   0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean     -0.078736     0.017925    -0.012978     0.000483
std       1.029096     0.976971     0.979431     0.980950
min      -3.586244    -2.816405    -3.242575    -2.875089
25%      -0.756937    -0.680205    -0.661406    -0.720338
50%      -0.060153     0.056706     0.005630     0.014671
75%       0.583656     0.716136     0.618660     0.650299
max       2.954882     2.742432     3.512564     2.935388


DataFrame数据框是用于存储多行多列的数据集合,是Series;
   类似于Excel二维表格,对应DataFrame的操作无外乎"增,删,改,查"

dataFrameSeries:     age   name
0   26    Ken
1   29  Jerry
2   24    Ben

0    26
1    29
2    24
Name: age, dtype: int64


   获取索引号是第一行的值(其实是第二行,从0开始)

   age   name
1   29  Jerry
-------------------------------------------------------

   获取第0行到第二行(不包括)与第0列到第2列(不包括2行)的数据块

   age   name
0   26    Ken
1   29  Jerry

Ken


  访问某一行的时候,不能仅用行的index来访问,如要访问dataFrameSeries的index = 1的行,
  不能写成dataFrameSeries[1],而要写成dataFrameSeries[1:2] ; DataFrame的index可以使任意的,
  不会像Series那样报错,但会显示"Empty DataFrame",并列出Columns:[列名],执行下面的代码看看结果

        age  name
second   29  John
third    24  JIMI

Empty DataFrame
Columns: [age, name]
Index: []

Empty DataFrame
Columns: [age, name]
Index: []
----------------------------------------------------------------

访问列
second    29
third     24
Name: age, dtype: int64

        age
second   29
third    24

访问数据块
        age
second   29
---------------------------------------------------------------
Jerry
John
如果这里用索引号就会报错,当有索引名时,不能用索引号,异常信息:  1

修改列名
   name1 name2
0     26   Ken
修改行的索引
   name1  name2
1     26    Ken
2     29  Jerry
3     24    Ben
根据行索引删除
根据列名进行删除
   name1  name2
1     26    Ken
2     29  Jerry
3     24    Ben

Process finished with exit code 0
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 非常感谢您的提问。Python 作为一种强大的编程语言,可以用于金融数据分析与挖掘实战。Python数据分析库如 pandas、numpy、matplotlib 等,可以帮助分析金融数据,而数据挖掘库如 scikit-learn、tensorflow 等,则可以帮助挖掘金融数据中的规律和趋势。如果您有具体的问题或需求,我可以为您提供更详细的解答和建议。 ### 回答2: Python金融数据分析与挖掘实战是指通过使用Python编程语言来对金融领域的数据进行分析和挖掘,并将其应用于实际问题中。Python是一种简单易学、功能强大的编程语言,在金融数据分析领域具有广泛的应用。以下是关于Python金融数据分析与挖掘实战的介绍和应用。 首先,Python金融数据分析与挖掘实战可以应用于金融市场预测与建模。通过使用Python中的数据处理、统计分析和机器学习等库,可以对金融市场数据进行建模和预测,帮助投资者做出更明智的投资决策。 其次,Python金融数据分析与挖掘实战可以用于风险管理和金融产品创新。通过对金融数据进行分析和挖掘,可以发现潜在的风险因素,并采取相应的风险管理措施。同时,还可以利用分析结果创新金融产品,满足客户的不同需求。 此外,Python金融数据分析与挖掘实战还可以用于金融机构的运营和决策支持。金融机构需要处理大量的数据,通过使用Python进行数据分析和挖掘,可以帮助机构发现潜在的商机、提升运营效率,并为决策者提供可靠的数据支持。 最后,Python金融数据分析与挖掘实战还可以应用于个人理财和财务规划。通过使用Python编程语言,个人可以对自己的财务数据进行分析和挖掘,帮助制定更合理的理财计划和财务规划。 总之,Python金融数据分析与挖掘实战不仅可以用于金融市场预测和风险管理,还可以应用于金融产品创新和运营决策支持。同时,个人也可以利用Python进行个人理财和财务规划。这些应用都能够帮助实现更精确的数据分析和更有效的决策支持,从而实现更好的金融业绩和个人理财效果。 ### 回答3: Python金融数据分析与挖掘实战是将Python编程语言应用于金融数据分析和挖掘的实际项目。在这个领域中,Python作为一种功能强大、易于学习和使用的编程语言,被广泛应用于金融行业。 Python具有丰富的科学计算库和数据处理库,如NumPy、Pandas和SciPy等,这些库提供了各种处理和分析金融数据的工具和函数。Python还有一系列强大的可视化库,如Matplotlib和Seaborn,帮助用户直观地呈现和展示金融数据。 通过Python金融数据分析与挖掘实战,可以实现以下目标: 1. 数据准备和清洗:使用Python进行数据清洗和整理,括处理缺失值、异常值和重复值等,以获得高质量、干净的金融数据。 2. 统计分析和建模:使用Python进行统计分析,并通过建立合适的模型来预测金融市场的变动和趋势。这些模型可以括回归模型、时间序列模型和机器学习模型等。 3. 数据可视化:使用Python的可视化库,将分析结果以图表的形式展示出来,帮助用户更好地理解和解释数据。通过数据可视化,可以揭示隐藏在数据背后的规律和模式。 4. 量化交易策略:利用Python编写量化交易策略,根据金融数据和模型的分析结果进行交易决策。通过编写自动化交易程序,可以实现快速、高效的交易执行。 Python金融数据分析与挖掘实战不仅可以帮助用户更好地理解和利用金融数据,还可以提高金融决策的准确性和效率。同时,Python的开源特性和丰富的社区资源,为金融数据分析提供了强大的支持和发展空间。因此,掌握Python金融数据分析与挖掘实战技能对从事金融行业的专业人士来说是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值