今日CS.CV 计算机视觉论文速览
Fri, 28 Jun 2019
Totally 35 papers
?上期速览✈更多精彩请移步主页
Interesting:
?启发式的对抗图像生成, 研究人员提出了一种新方法来探索GANs隐空间,为艺术家提供更好的图像创意生成方式。这篇文章提出了一种新策略,使得创意工作者可以通过选择的数据集和优化控制方法来学习并启发创作过程。研究人员设计了简单的优化方法来寻找超参数使得生成的结果与输入的启发图像最为接近。(from facebook ai research)
研究人员提出的优化方法,使得搜索到的隐变量最为接近来生成与参考图像接近的结果:
一些通过引导得到的结果:
dataset: Describable Textures Dataset,RTW dataset described in [38],Celeba-HQ dataset ,FashionGen dataset [36]
?点云自然变换PCT,一种基于图网络有效表达大规模点云的方法, 结合了体素和学习的方法将三维空间在体素中表示并提出了图网络方法来表示每个点,同时克服了体素表示带来的离散误差和学习表示难以捕捉大规模场景全局方差的缺点。对于大场景下的三维点云表示类似2D图像下的离散余弦变换,可以有效表示点云的全局与细节特征。(from CMU)
点云自然变换的示意图,包括了切分、归一化表示、体素级表示和最后的合成度量过程:
研究人员在模型中提出了图构建卷积的结构,用于从体素中学习编码和嵌入(K最邻近3D点,多个K值来确定最邻近选择数量)。:
ref:
http://www.merl.com/people/schen
https://users.ece.cmu.edu/~sihengc/
?SPHNet基于球面谐波函数核的旋转不变性点云表示, 提出了一种可以直接操纵点云的选择不变性架构,包括全局、局域都具有不变性,对非刚体十分有用。通过将球谐函数和应用于不同的网络层,来保证刚体运动的不变性,并基于空间剖分的数据结构来引入更有效的池化操作。这种方法对于复杂结构可以灵活高效地处理。(from LIX, Ecole Polytechnique巴黎综合理工)
下图中可以看到,球写函数卷积将信号限制在了Rx空间中(原来的信号空间中):
基于这一方法提出的分类和分割的综述:
针对生物领域RNA分子分割的应用:
注意看这个的relatedwork,包括点云学习和变化不变性的综述。
dataset:D-FAUST dataset,contains scans of 10 different subjects completing various sequences of motions given as meshes with the same structure and indexing.
RNAs (5srRNAs), downloaded from the PDB database [3]
ref: https://www.lix.polytechnique.fr/
?SpliceRadar一种检测图像被修改过的方法, (from Verisk AI, Verisk Analytics,VAST)
用于检测出图像中被修改的部分:
这一方法的架构,包括了rich filter,语义边缘抑制等方法:
site:http://www.grip.unina.it/research/83-image-forensics/100-splicebuster.html
https://arxiv.org/pdf/1906.11663.pdf
?表面纹理缺陷检测的数据集, (from Islamic Azad University)
?CaDSS白内障语义分割的数据集, (from Digital Surgery Ltd UCL)
https://cataracts.grand-challenge.org/
Daily Computer Vision Papers
A Generalized Framework for Agglomerative Clustering of Signed Graphs applied to Instance Segmentation Authors Alberto Bailoni, Constantin Pape, Steffen Wolf, Thorsten Beier, Anna Kreshuk, Fred A. Hamprecht 我们提出了一种新颖的理论框架,将层次凝聚聚类的算法推广到加权图,其中节点之间具有吸引力和排斥性的相互作用。该框架定义了GASP,一种用于签名图分区的通用算法,并允许我们探索不同链接标准的许多组合,并且不能链接约束。我们证明了现有聚类方法与其中一些组合的等价性,并为未经研究的组合引入了新算法。进行广泛的比较以在图像中的实例分割的背景下评估聚类算法的 |