多分类的布里尔分数Brier Score计算

当使用新版sklearn计算四分类的布里尔分数时遇到错误:`ValueError: Only binary classification is supported. The type of the target is multiclass.` 通过将标签进行哑变量变换,然后分别计算每个类别的布里尔分数可以解决此问题。具体步骤包括对测试集标签进行哑变量处理,然后利用`brier_score_loss`计算每个类别得分。

问题描述:

使用sklearn的brier_score_loss类计算四分类的布里尔分数时报错:

ValueError: Only binary classification is supported. The type of the target is multiclass

新版sklearn的brier_score_loss不支持多分类了

解决方案:

先对测试集的标签进行哑变量变换:

proba= models.predict_proba(Xtest)
Ytest_= Ytest.copy()
Ytest_ = pd.get_dummies(Ytest_)

再计算每个类别的布里尔分数,就可以成功计算出来

from sklearn.metrics import brier_score_loss as BS
for i in range(4):
        bs = BS(Ytest_[i],proba[:,i])
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值