机器学习-GridSearchCV scoring 参数设置!

本文详细介绍了用于评估机器学习模型的各种关键指标,包括分类任务中的准确率、F1分数、AUC-ROC曲线等,以及回归任务中的平均绝对误差、均方误差等。通过这些指标,读者可以全面了解如何衡量模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类情况:

‘accuracy’metrics.accuracy_score
‘average_precision’metrics.average_precision_score
‘f1’metrics.f1_score
‘f1_micro’metrics.f1_score
‘f1_macro’metrics.f1_score
‘f1_weighted’metrics.f1_score
‘f1_samples’metrics.f1_score
‘neg_log_loss’metrics.log_loss
‘precision’ etc.metrics.precision_score
‘recall’ etc.metrics.recall_score
‘roc_auc’metrics.roc_auc_score

回归情况:

‘neg_mean_absolute_error’metrics.mean_absolute_error
‘neg_mean_squared_error’metrics.mean_squared_error
‘neg_median_absolute_error’metrics.median_absolute_error
‘r2’metrics.r2_score
### 头歌平台机器学习模型评估、选择与验证的技术文档教程 #### 模型评估的基础概念 在机器学习领域,模型评估是一个至关重要的环节。它不仅帮助我们理解模型的表现,还能指导后续的优化工作。常见的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1得分(F1 Score),这些适用于分类问题[^3]。 对于回归问题,则有均方误差(MSE)、平均绝对误差(MAE)以及其他特定场景下的评价标准[^4]。通过合理选用这些指标,能够全面反映模型的实际表现。 #### 数据划分策略 为了有效评估模型性能,在实际操作中一般会把原始数据划分为训练集、验证集以及测试集三部分。其中,训练集用于拟合模型;验证集则服务于超参数调优过程;而最终的模型效能检验依赖于独立的测试样本集合[^2]。 以下是简单的数据分割代码示例: ```python from sklearn.model_selection import train_test_split X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, random_state=42) X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) ``` #### 跨越验证技术的应用 除了传统的单次拆分方式外,交叉验证是一种更为稳健可靠的手段。特别是K折交叉验证(k-Fold Cross Validation),它可以多次重复利用整个数据集的不同子集作为训练和验证用途,从而减少因随机抽样带来的偏差影响。 实现k折交叉验证可以通过`sklearn`库轻松完成: ```python from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression model = LogisticRegression() scores = cross_val_score(model, X, y, cv=5, scoring='accuracy') print(f'Cross-validation scores: {scores}') print(f'Mean score: {scores.mean()}') ``` #### 参数调节技巧 当初步建立好基础版本之后,往往还需要进一步探索最佳设置组合以提升效果。这里介绍两种主要途径——网格搜索(Grid Search) 和随机搜索(Randomized Search)[^2]。前者穷尽所有候选值可能性,后者则是按照一定概率分布选取有限数量尝试点位,两者各有优势需视具体需求决定采用哪一种方案更合适。 以下展示了一个基于GridSearchCV的例子: ```python from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.1, 1, 10], 'penalty': ['l1', 'l2']} grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ print(best_params) ``` #### 进阶主题讨论 随着研究深入,还可以考虑更多复杂情境下特殊处理措施,比如不平衡类别情况下的应对办法或者多目标联合优化等问题解决思路等等[^1]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值