bert-tokenization-WordpieceTokenizer

本文深入探讨BERT的分词技术,重点解析WordpieceTokenizer的工作原理及其在BERT预训练过程中的作用。通过实例展示如何使用WordpieceTokenizer进行词汇切分,理解其在处理词汇未知词(unk)和词汇表构建过程中的策略。
摘要由CSDN通过智能技术生成
class WordpieceTokenizer(object):
  """Runs WordPiece tokenziation."""

  def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
    self.vocab = vocab
    self.unk_token = unk_token
    self.max_input_chars_per_word = max_input_chars_per_word

  def tokenize(self, text):
    """Tokenizes a piece of text into its word pieces.
    This uses a greedy longest-match-first algorithm to perform tokenization
    using the given vocabulary.
    For example:
      input = "unaffable"
      output = ["un", "##aff", "##able"]
    Args:
      text: A single token or whitespace separated tokens. This should have
        already been passed through `BasicTokenizer.
    Returns:
      A list of wordpiece tokens.
    """

    text = convert_to_unicode(text)

    output_tokens = []
    for token in whitespace_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值