tanh函数图像以及求导

博客围绕tanh函数展开,主要涉及该函数的图像以及求导相关内容,属于信息技术领域中数学函数相关知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

### 绘制神经网络激活函数图像 以下是使用 Python 的 `numpy` 和 `matplotlib` 库绘制常见激活函数(阶跃函数、Sigmoid 函数tanh 函数)的代码示例: #### 阶跃函数 阶跃函数是一种简单的二值化函数,其定义如下: \[ f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases} \] ```python import numpy as np import matplotlib.pyplot as plt def step_function(x): return np.array(x > 0, dtype=int) x = np.arange(-5.0, 5.0, 0.1) y = step_function(x) plt.plot(x, y) plt.ylim(-0.1, 1.1) plt.title("Step Function") plt.grid(True) plt.show() ``` 此代码实现了阶跃函数并将其绘制成图[^1]。 --- #### Sigmoid 函数 Sigmoid 是一种常用的平滑非线性激活函数,其数学表达式为: \[ f(x) = \frac{1}{1 + e^{-x}} \] ```python def sigmoid(x): return 1 / (1 + np.exp(-x)) x = np.linspace(-10, 10, 500) y = sigmoid(x) plt.plot(x, y) plt.title("Sigmoid Function") plt.grid(True) plt.show() ``` 该函数连续且可微分,在许多场景下被广泛应用于神经网络中的隐藏层节点[^5]。 --- #### Tanh 函数 Tanh 函数是对称版本的 Sigmoid 函数,具有零中心化的特性,其数学表达式为: \[ f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \] ```python def tanh(x): return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x)) x = np.linspace(-3, 3, 500) y = tanh(x) plt.plot(x, y) plt.title("Tanh Function") plt.grid(True) plt.show() ``` 上述代码展示了如何通过 NumPy 实现 Tanh 函数,并利用 Matplotlib 将其可视化[^4]。 --- #### ReLU 函数 ReLU(Rectified Linear Unit)是非线性激活函数的一种变体,因其高效性和简洁性而受到青睐。其定义为: \[ f(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases} \] ```python def relu(x): return np.maximum(0, x) x = np.linspace(-5, 5, 500) y = relu(x) plt.plot(x, y) plt.title("ReLU Function") plt.grid(True) plt.show() ``` ReLU 函数的特点在于它能够有效缓解梯度消失问题,同时保持计算上的简单性。 --- ### 总结 以上代码分别演示了四种常见的激活函数——阶跃函数、Sigmoid 函数Tanh 函数以及 ReLU 函数的实现与可视化方法。这些函数均满足作为激活函数所需的条件:非线性、易于求导以及高效的计算性能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值