1、集合
1.1 集合的定义
一些离散个体组成的全体,组成集合的个体称为它的元素或成员。
1.2 集合的表示
列元素法 A = { a, b, c, d }
谓词表示法 B = { x | P(x) } B 由使得 P(x) 为真的 x 构成
1.3 集合与元素的关系:属于
,不属于
实例:
A={ x | xR
x2-1=0 }, A={-1,1}
1A, 2
A
注意:对于任何集合 A 和元素 x (可以是集合),
xA和 x
A 两者成立其一,且仅成立其一.
1.4 集合之间的关系
1.5 空集与全集
1.6 幂集
2、集合的基本运算
2.1 集合运算的定义
2.2 集合运算的说明
2.3 集合运算的算律
2.4 应用:集合包含或相等的证明方法
2.4.1 证明集合包含
(1) 命题演算法
(2) 包含传递法
(3) 等价条件法
(4) 反证法
(5) 并交运算法
2.4.2 证明集合相等
(1) 命题演算
(2) 等式代入法
(3) 反证法
(4) 运算法