离散数学(九):集合的基本概念和运算

1、集合

1.1 集合的定义

一些离散个体组成的全体,组成集合的个体称为它的元素或成员。

1.2 集合的表示

列元素法    = { a, b, c, d }

谓词表示法  B = { x | P(x) }         B 由使得 P(x) 为真的 x 构成

1.3 集合与元素的关系属于\in,不属于\notin

 实例:   

         A={ x | x\inR\wedgex2-1=0 }A={-1,1}

         1\inA,  2\notinA

注意:对于任何集合 A 和元素 x (可以是集合)

            x\inAx\notinA 两者成立其一,且仅成立其一.  

1.4 集合之间的关系

 

 1.5 空集与全集

 1.6 幂集

 2、集合的基本运算

2.1 集合运算的定义

 2.2 集合运算的说明

 2.3 集合运算的算律

 

 2.4 应用:集合包含或相等的证明方法

2.4.1 证明集合包含

(1) 命题演算法

(2) 包含传递法

 

(3) 等价条件法

(4) 反证法

 (5) 并交运算

2.4.2 证明集合相等

(1) 命题演算

(2) 等式代入法

(3) 反证法

 (4) 运算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值