第三章 集合的基本概念和运算

第三章 集合的基本概念和运算

3.1 集合的基本概念

3.1.1 集合的定义与表示

集合:不能精确定义的基本的数学概念。一般认为集合指的是一些可确定的、可分辨的事物构成的整体。

集合通常用大写的英文字母来标记

常用数集:

N 自然数集合(0是自然数)

Z 整数集合

Q 有理数集合

R 实数集合

C 复数集合

集合的表示:

列元素法:将集合的所有元素一一列举出来,元素之间用逗号分开,并用花括号将它们括起来。

​ 例如:A={ 1,b,c,5 }

​ 1是集合A的元素,记作1∈A,并且b∈A、c∈A、5∈A

​ 2不是集合A的元素,记作2∉A

谓词表示法:

​ B={ x| P(x) } B由使得P(x)为真的x构成

​ 例如:B={ x|x∈Z∧3<x≤6 }

​ 则:B={ 4,5,6 }

集合的特点:

互异性:集合的元素彼此不同;

无序性:集合的元素是无序的。

3.1.2 集合与元素

元素:组成集合的事物。

​ 对于给定的集合和事物,应该可以判断这个特定的事物是否属于这个集合。如果属于,就称它为这个集合的元素。

有限集:集合中的元素是有限个

有限集的基:有限集A中的元素的个数,记作|A|。

​ 如A={a,b,c},则|A|=3。

无限集:集合中的元素是无限个

注意:对于任何集合A和元素x(可以是集合),x∈A和x∉A两者成立其一,且仅成立其一。

​ 集合的元素可以是任何类型的事物,一个集合也可以作为另一个集合的元素。例如:{ a,{b} },{ a,{b,c},d,{{d}} }

例题:

​ 1.以下哪一个构成集合?( )

​ A {x|x may be a real number }

​ B {x|x is a pretty boy }

​ C {x|x is a real number }

​ D {x|x looks like an apple }

​ 2.给定集合:{x|x∈N∧∃t( t∈{2,3} ∧x=2t ) },则集合的元素为( )

​ A { 2,3 }

​ B { 4,6 }

​ C { 4,6,8,10,… }

​ D { 1,4,6,7,8,… }

​ 3.给定集合:{x|x∈N∧∃t∃s( t∈{0,1} ∧s∈{3,4}∧t<x<s ) },则集合的元素为( )

​ A { 0,1,2,3 }

​ B { 1,2,3 }

​ C { 2 }

​ D { 2,3 }

​ 4.集合A={x|x∈R∧x2-1=0},则以下描述哪些是正确的?( )

​ A 1∈A

​ B 2∉A

​ C -1∈A

​ D 0∈A

​ 答案:1. C 2. B 3. B 4. ABC

3.1.3 集合之间的关系

包含(子集):设A、B为集合,如果A中的每个元素都是B中的元素,则称A为B的子集合,简称子集。这时也称A被B包含,或B包含A,记作A⊆B

A⊆B⇔∀x(x∈A→x∈B)

对于任何集合S,都有S⊆S。

不包含:如果B不被A包含,则记作A⊈B

A⊈B⇔∃x(x∈A∧x∉B)

​ 例如:A={0,1,2},B={0,1},C={1,2},则有B⊆A,C⊆A,但B⊈C。

相等:设A、B为集合,如果A⊆B且B⊆A,则称A与B相等,记作A=B

A=B⇔A⊆B∧B⊆A

不相等:如果A和B不相等,则记作A≠B

两个集合相等的充分必要条件是它们具有相同的元素。

​ 例如:A={ x|x是小于等于3的素数 },B={ x|x=2∨x=3 },则有A=B。

真包含:设A、B为集合,如果A⊆B且A≠B,则称A是B的真子集,记作A⊂B

A⊂B⇔A⊆B∧A≠B

不真包含:如果A不是B的真子集,则记作A⊄B。或者A⊈B,或者B=A。

​ 例如:{0,1}是{0,1,2}的真子集,但{1,3}和{0,1,2}都不是{0,1,2}的真子集。

思考: ≠与⊄的定义

注意⊂和⊆是不同层次的问题

例题:

​ 1.下面哪些陈述正确?( )

​ A { a,b } ⊆{ a,b,c,{a,b,c} }

​ B { a,b } ∈{ a,b,c,{a,b} }

​ C { a,b } ⊆{ a,b,{{a,b}} }

​ D { a,b } ∈{ a,b,{{a,b}} }

​ 2.设P={ x|(x+1)2≤4且x∈R },Q={x| 5≤x2+16且x∈R },则下面陈述正确的是?( )

​ A Q ⊂ P

​ B Q ⊆ P

​ C P ⊂ Q

​ D P = Q

​ 答案:1. ABC 2. C

3.1.4 空集

空集Ø 不含任何元素的集合

∅={ x| x≠x }

空集是客观存在的

​ 实例 {x|x2+1=0∧x∈R }就是空集

​ |∅|=0,|{∅}|=1

∅-∅=∅

定理 空集是任何集合的子集

∅⊆A⇔∀x(x∈∅→x∈A)⇔T

推论 空集是惟一的

​ 证明 假设存在∅1和∅2,则∅1⊆∅2且∅2⊆∅1,因此∅1=∅2

3.1.5 全集

全集E 在一个具体问题中,如果所涉及的集合都是某个集合的子集,则称这个集合为全集。

​ 相对性的概念。研究的问题不同,所取得全集也不同。

​ 在给定问题中,全集包含任何集合,即∀A( A⊆E )

3.1.6 幂集

定义 集合A的全体子集构成的集合称作A的幂集,记作P(A)

P(A)={ x|x⊆A }

P(A)={x|x⊆A }

​ 实例

​ P(∅)={ ∅ }

​ P({∅})={ ∅, {∅} }

​ P({1,{2,3}})={ ∅, {1},{{2,3}},{1,{2,3}}

计数

如果|A|=n,则|P(A)|=2n

例题:

​ 1.下面哪些陈述正确?( )

​ A ∅ ∈ ∅

​ B ∅ ⊆ ∅

​ C ∅ ∈ {∅}

​ D ∅ ⊆ {∅}

​ 2.下面关于集合的表示中正确的是?( )

​ A {a} ∈ { a,b,c }

​ B {a}⊆ { a,b,c }

​ C ∅ ∈ { a,b,c }

​ D {a,b} ∈ { a,b,c }

​ 3.设A={ 2,{a},3,4},B={ {a},3,4,1 },E为全集,下列命题正确的是?( )

​ A {2} ∈A

​ B {a}⊆ A

​ C ∅ ⊆ {{a}}⊆B⊆E

​ D {{a},1,3,4} ⊂ B

​ 4.设S={ ∅,{2},{1,∅}},则P(S)有多少个元素?( )

​ A 3

​ B 16

​ C 8

​ 5.设A={ a,{a}},下列命题错误的是?( )

​ A {a} ∈P(A)

​ B {a}⊆ P(A)

​ C {{a}}∈P(A)

​ D {{a}} ⊆ P(A)

​ 答案:1. BCD 2. B 3. C 4. C 5. B

3.2 集合的基本运算

3.2.1 集合基本运算的定义

A∪B={ x|x∈A∨x∈B }

A∩B={ x|x∈A∧x∈B }

相对补(把A有B没有的元素取出来) A-B={ x|x∈A∧x∉B }

对称差(去掉AB中都有的元素) A⊕B=(A-B)∪(B-A)

=(A∪B)-(A∩B)

绝对补 ~A=E-A

例如: E={0,1,2,3},A={0,1,2},B={2,3}

​ A∪B={0,1,2,3}=E

​ A∩B={2}

​ A-B= {0,1}

​ A⊕B={0,1}∪{3}={0,1,3}

​ ~A={3}

​ ~B={0,1}

3.2.2 文氏图(维恩图)表示

在这里插入图片描述

3.2.3 关于运算的说明

  • 运算顺序:~和幂集优先,其他由括号确定

  • 并和交运算可以推广到有穷个集合上,即

    A1∪A2∪…An={ x|x∈A1∨x∈A2∨…∨x∈An }

    A1∩A21∩…An={ x|x∈A1∧x∈A2∧…∧x∈An }

  • 某些重要结果

    ∅⊆A-B⊆A

    A⊆B⇔A-B=∅

    A∩B=∅⇔A-B=A

    例题:

​ 1.分别对条件(1)到(3),确定X集合与下述那些集合相等。

​ S1={ 1,2,…,8,9 },S2={ 2,4,6,8 },S3={ 1,3,5,7,9 },S4={ 3,4,5 },S5={ 3,5 }

​ (1)若X∩S3=∅,则X

​ (2)若X⊆S4,X∩S2=∅,则X

​ (3)若X-S3=∅,则X

​ 2.令A={ 1,2,3 },B={2,3},则A⊕B的幂集是P(A⊕B)=( )

​ A {∅,{1}}

​ B {∅,{1,2},{1}}

​ C {∅,{1,2}}

​ D {∅,{2},{3}}

​ 3.若A-B=∅,以下结论中正确的是?( )

​ A A=∅

​ B B=∅

​ C A⊂B

​ D B⊂A

​ 4.以下结论中正确的是?( )

​ A 若A-B=B-A,则A=B

​ B 空集是任何集合的 真子集

​ C 空集只是非空集合的子集

​ D 若A的一个元素属于B,则A=B

​ 5.设A、B为集合,当( )时A-B=B。

​ A A=B

​ B A⊆B

​ C B⊆A

​ D A=B=∅

​ 答案:1. (1)=S2 (2)=S5 (3)=S3,S5 2. A 3. D 4. A 5. D

3.2.4 集合运算的算律

交换A∪B=B∪AA∩B=B∩AA⊕B=B⊕A
结合(A∪B)∪C=A∪(B∪C)(A∩B)∩C=A∩(B∩C)(A⊕B)⊕C=A⊕(B⊕C)
幂等A∪A=AA∩A=A
∩与∪∩与⊕
分配A∪(B∩C)=(A∪B)∩(A∪C)
A∪(B∩C)=(A∩B)∪(A∩C)
A∩(B⊕C)=(A∩B)⊕(A∩C)
吸收A∪(A∩B)=A
A∩(A∪B)=A
D.M 律A-(B∪C)=(A-B)∩(A-C)
A-(B∩C)=(A-B)∪(A-C)
~ (B∪C)= ~B ∩ ~C
~ (B∩C)= ~B ∪ ~C
双重否定~~A=A

吸收律的前提:∪、∩可交换

E
补元律(矛盾律)A∩~A=∅(排中律)A∪~A=E
零律A∩∅=∅A∪E=E
同一律A∪∅=AA∩E=A
否定(余补律)~∅=E~E=∅

例题:

​ 以下陈述正确的是?

​ A if A∪B=A∪C,then B=C

​ B if A∩B=A∩C,then B=C

​ C if A-B=∅,then A=B

​ D if ~A∪B=E,then A⊆B

答案:D

3.2.5 集合包含或相等的证明方法

证明X⊆Y证明X=Y
命题演算法命题演算法
包含传递法等式代入法
等价条件法反证法
反证法运算法
并交运算法

以上的X,Y代表集合公式

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小邹子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值