大量日志处理
文章平均质量分 90
阿鹏哥哥01
这个作者很懒,什么都没留下…
展开
-
分布式日志收集工具分析比较
目录写在最前:为什么做日志收集系统❓一、多种日志收集工具比较1、背景介绍2、Facebook 的 Scribe3、Apache 的 Chukwa4、LinkedIn 的 Kafka5、Cloudera 的 Flume OG6、“星星”小结7、众星捧月之 Apache 的 Flume NGFlume NG 架构:Flume NG 特性:Flume NG 节点组成图:Flume NG 常用组件删减节点角色,脱离 zookeeper用户配置变化之安装转载 2021-12-10 09:46:00 · 674 阅读 · 0 评论 -
Storm大数据处理
1.hadoop有master与slave,Storm与之对应的节点是什么?2.Storm控制节点上面运行一个后台程序被称之为什么?3.Supervisor的作用是什么?4.Topology与Worker之间的关系是什么?5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成?6.storm稳定的原因是什么?7.如何运行Topology?strom jar all-your-code.jar backtype.storm.MyTopolog转载 2021-12-09 19:19:19 · 1422 阅读 · 0 评论 -
golang 日志分析_容器日志采集利器:Filebeat深度剖析与实践
在云原生时代和容器化浪潮中,容器的日志采集是一个看起来不起眼却又无法忽视的重要议题。对于容器日志采集我们常用的工具有filebeat和fluentd,两者对比各有优劣,相比基于ruby的fluentd,考虑到可定制性,我们一般默认选择golang技术栈的filbeat作为主力的日志采集agent。相比较传统的日志采集方式,容器化下单节点会运行更多的服务,负载也会有更短的生命周期,而这些更容易对日志采集agent造成压力,虽然filebeat足够轻量级和高性能,但如果不了解filebeat的机制,不合理的配转载 2021-08-25 11:56:20 · 1187 阅读 · 0 评论 -
ELK原理与介绍
为什么用到ELK:一般我们需要进行日志分析场景:直接在日志文件中 grep、awk 就可以获得自己想要的信息。但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档、文本搜索太慢怎么办、如何多维度查询。需要集中化的日志管理,所有服务器上的日志收集汇总。常见解决思路是建立集中式日志收集系统,将所有节点上的日志统一收集,管理,访问。一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套转载 2021-08-25 10:34:14 · 238 阅读 · 0 评论 -
彪悍开源的分析数据库-ClickHouse
作者:欧阳辰 链接:https://zhuanlan.zhihu.com/p/22165241 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。今天介绍一个来自俄罗斯的凶猛彪悍的分析数据库:ClickHouse,它是今年6月开源,俄语社区为主,好酒不怕巷子深。本文内容较长,分为三个部分:走马观花,死而后生,遥指杏花村;第一章,走马观花,初步了解一下基本特性;第二章,死而后生,介绍ClickHouse的技术架构演化的今生...转载 2021-08-24 18:17:53 · 851 阅读 · 0 评论 -
ClickHouse深度揭秘
引言ClickHouse是近年来备受关注的开源列式数据库,主要用于数据分析(OLAP)领域。目前国内社区火热,各个大厂纷纷跟进大规模使用:今日头条内部用ClickHouse来做用户行为分析,内部一共几千个ClickHouse节点,单集群最大1200节点,总数据量几十PB,日增原始数据300TB左右。 腾讯内部用ClickHouse做游戏数据分析,并且为之建立了一整套监控运维体系。 携程内部从18年7月份开始接入试用,目前80%的业务都跑在ClickHouse上。每天数据增量十多亿,近百万次查询.转载 2021-08-24 12:07:47 · 336 阅读 · 0 评论 -
开源日志系统比较:scribe、chukwa、kafka、flume
1. 背景介绍许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征:(1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦;(2) 支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统;(3) 具有高可扩展性。即:当数据量增加时,可以通过增加节点进行水平扩展。本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开源的日志系统,包括facebook的scribe,apach转载 2021-08-17 14:46:28 · 908 阅读 · 0 评论