为何OpenAI能领先大厂开发出ChatGPT的大模型?
信仰和环境缺一不可,不是因为OpenAI从0到1创造性的搞出来大模型,而是信仰和环境造就了ChatGPT大模型
在谈论为何中国乃至其他国家的大厂未能开发出如ChatGPT的模型时,我们需要强调,这并非仅仅是中国的问题。即使是谷歌,尽管Transformer和Pre-Trained这类技术最初出自它,也未能率先开发出类似的模型。
大厂无法做出大模型的原因,我认为主要是下面几个因素:
第一,任何项目都讲究投入产出比。设想你是某互联网公司NLP负责人,你提出一个可能需要10亿美金的初期投入才能可能实现通用智能的想法。但这么巨大的成本投入对于任何公司来说都不是小数目,老板通常会选择更保守、成本更低的项目,甚至你一直只会卡在小模型上无法前进,小模型没办法涌现智能,只会陷入死胡同。在大公司中,这种情况尤为明显,因为大公司有很多项目可以选择,不差你这一个高成本的项目,且大公司的部门壁垒和资源壁垒更高,沟通和行动效率往往不如像OpenAI这样的初创公司。
第二,信仰是一大动力源泉。深度学习在2012年开始炒作,到2020年疫情后开始回归正常,许多人对深度学习这种黑盒模型能够做出通用智能的信念已经减弱。但OpenAI是个例外,其创始人Ilya一直坚信只要模型足够大,就能理解自然语言和知识,就可以达到人类智能水平。在Ilya的坚持下,当模型参数达到1750亿时,ChatGPT确实展现出了令人惊讶的智力和推理能力。
第三,创业和投资环境也是一个关键因素。中国的投资者多为富一代或二代,对投资回报有很高的要求。相比之下,像马斯克这样的国外投资人处于富五代,他们更愿意承担高风险,因为他们有闲钱可以投资。他们的思维方式和行为方式都更为大胆,对失败也更宽容。
第四,数据质量和数据生态也是关键。虽然中国的互联网公司拥有大量用户和丰富的数据,但数据的质量、多样性和生态平衡性却成为一个需要面对的问题,中国的互联网公司由于利益驱使导致数据质量并不好,所谓Garbage In, Garbage Out就是这个原因。而在OpenAI的成功背后,就有着严格的数据管理策略和优秀的数据生态。
因此,虽然OpenAI已经证明了大模型能够涌现出智能,但这并不意味着所有公司都能轻易复制其成功。然而,这并不是说大厂就无法跟上步伐。随着技术的发展和公司对于数据生态重要性的认识加深,我们期待在不久的将来看到大厂在大模型研发上迎头赶上,甚至领先于OpenAI。
关注我,了解更多AI/Cloud
本文由 mdnice 多平台发布