Ubuntu16.04 配置tensorflow gpu版本

本文详细介绍了如何在Ubuntu16.04上配置TensorFlow的GPU版本,包括安装NVIDIA驱动、CUDA8、cuDNN,解决遇到的错误,以及使用Python虚拟环境。此外,还提到了低配机器安装TensorFlow可能出现的MemoryError问题。
摘要由CSDN通过智能技术生成

requirements

  • python 2.7
  • Flask
  • tensorflow GPU 版本

安装nvidia driver

经过不断踩坑的安装,终于google到了靠谱的方法,首先检查你的NVIDIA VGA card model

sudo lshw -numeric -C display

NVIDIA-DISPLAYCARD
可以看到你的显卡信息,比如我的就是 product: GM107M [GeForce GTX 950M] [10DE:139A],然后去NVDIA driver search page搜索你的显卡需要的驱动型号,页面如下:
gtx-search

下面是我的电脑对应的驱动版本

LINUX X64 (AMD64/EM64T) DISPLAY DRIVER

Version:    375.20
Release Date:   2016.11.18
Operating System:   Linux 64-bit
Language:   English (US)
File Size:  72.37 MB

从搜索的结果页面看到,我的驱动版本应该是375.20,为了再次确认一遍,你还可以使用这个命令查看你可以使用的驱动:

ubuntu-drivers devices

结果显示和搜索到的驱动版本一样,推荐也是375

== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==
vendor   : NVIDIA Corporation
model    : GM107M [GeForce GTX 950M]
modalias : pci:v000010DEd0000139Asv000017AAsd0000380Bbc03sc02i00
driver   : nvidia-367 - third-party free
driver   : nvidia-375 - third-party free recommended
driver   : nvidia-364 - third-party free
driver   : nvidia-358 - third-party free
driver   : xserver-xorg-video-nouveau - distro free builtin
driver   : nvidia-370 - third-party free

== cpu-microcode.py ==
driver   : intel-microcode - distro non-free

好了,终于可以安装对应的驱动了,使用以下命令

version: 375
sudo apt-get install nvidia-375
//你自己的版本
//version : xxx
//sudo apt-get install nvidia-xxx

什么,安装很慢,找不到包?更换一下软件源,这个自己google怎么更换,最简单的就是图形界面里面找到System->settings->Software&Updates,然后换一下源,比如阿里云或者中科大(我突然不能链接中科大镜像了,真实坑),然后再执行一下命令

sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev

安装完成之后,重启电脑,驱动应该就完成了!你可以在dashboard上搜索nvidia,看到像 NVIDIA X Server Settings的东西,就说明安装驱动成功了,接下来就是安装cuda8了
NVIDIA-DashBoard
NVIDIA X Server Settings

安装cuda8

首先也是去下载cuda toolkit 8.0,可以自己注册一个账号。
CUDA8
一定要选择runfile.下载完成之后,执行

sudo sh cuda_8.0.44_linux.run --override

然后就进入安装过程,开始都是End User License Agreement,你可以CTRL +C 跳过,然后accept,下面就是安装的交互界面,开始的Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?选择n,因为你已经安装驱动了。

Using more to view the EULA.
End User License Agreement
--------------------------


Preface
-------

The following contains specific license terms and conditions
for four separate NVIDIA products. By accepting this
agreement, you agree to comply with all the terms and
conditions applicable to the specific product(s) included
herein.


NVIDIA CUDA Toolkit


Description

The NVIDIA CUDA Toolkit provides command-line and graphical
tools for building, debugging and optimizing 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值