BZOJ 2301 Problem b(莫比乌斯反演+容斥)



题意:对于给出的n个询问,每次求有多少个数对(x,y),满足axbcyd,且gcd(x,y) = kgcd(x,y)函数为xy的最大公约数。

思路:莫比乌斯反演,类似于hdu 1695,加上一个小容斥即可。

这道题卡时间卡的简直心痛........一个优化是将处理mu的前缀和将相邻的a/i和b/i值相同的项合并起来

这样的话时间可以从50s降到10s.......

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int MAXN = 50050;
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
int Sum[MAXN+10];
void Moblus()
{
    memset(check,false,sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for(int i = 2; i <= MAXN; i++)
    {
        if( !check[i] )
        {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j++)
        {
            if(i * prime[j] > MAXN) break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
            {
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
} 
LL solve(int a, int b, int k) {
	if(a > b) swap(a, b);
	a /= k, b /= k;
	LL ans = 0;
	int last;
	for(int i = 1; i <= a; i = last+1) {
		last = min(a/(a/i), b/(b/i));
		ans += (LL)(Sum[last]-Sum[i-1])*(a/i)*(b/i);
	}
	return ans;
}
int main() {
    //freopen("input.txt", "r", stdin);
	int a, b, c, d, k; 
	int T; scanf("%d", &T);
	Moblus();
	for(int i=1;i<MAXN;i++)
	    Sum[i]=Sum[i-1]+mu[i]; 
	while(T--) {
		scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
		LL ans = solve(b, d, k)+solve(a-1, c-1, k)-solve(a-1, d, k)-solve(c-1, b, k);
		printf("%lld\n", ans);
	}
    return 0;
}



















发布了387 篇原创文章 · 获赞 25 · 访问量 31万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览