题意:给出一个字符串T和一个字符串P,求T的不包含P的不同子串数量。
思路:首先我们可以求出每个位置i可以延伸的不包含P的最远距离,记为rmax[i],那么答案就是sigma(rmax[i])减去重复的一部分,处理重复的一部分可以利用后缀数组的height数组,也就是说答案就是
sigma(rmax[sa[i]] - min(height[i], rmax[sa[i]])),现在的问题就是求出rmax,这个可以用KMP算法预处理出T中所有P串出现的起始位置,然后就可以很轻松的求出rmax了。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int MAXN = 50050;
//const int INF = 0x3f3f3f3f;
char P[MAXN], T[MAXN];
int f[MAXN], rmax[MAXN];
vector<int> flag;
void getFail(char* P) {
int m = strlen(P);
f[0] = 0; f[1] = 0;
for(int i = 1; i < m; i++) {
int j = f[i];
while(j && P[i]!=P[j]) j = f[j];
f[i+1] = P[i]==P[j] ? j+1 : 0;
}
}
int find_p(char* T, char* P) {
int ans = 0;
int n = strlen(T), m = strlen(P);
getFail(P);
int j = 0;
for(int i = 0; i < n; i++) {
while(j && P[j]!=T[i]) j = f[j];
if(P[j] == T[i]) j++;
if(j == m) flag.push_back(i-m+1), j=f[j];
}
return ans;
}
struct SuffixArray {
char s[MAXN]; /// 原始字符数组(最后一个字符应必须是0,而前面的字符必须非0)
int sa[MAXN]; // 后缀数组,sa[0]一定是n-1,即最后一个字符
int rank[MAXN]; // 名次数组
int height[MAXN]; // height数组
int t[MAXN], t2[MAXN], c[MAXN]; // 辅助数组
int n; // 字符个数
void clear() { n = 0; memset(sa, 0, sizeof(sa)); }
/// m为最大字符值加1。!!! 调用之前需设置好s和n
void build_sa(int m) {
int i, *x = t, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = s[i]]++;
for(i = 1; i < m; i++) c[i] += c[i-1];
for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;
for(int k = 1; k <= n; k <<= 1) {
int p = 0;
for(i = n-k; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i]-k;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 0; i < m; i++) c[i] += c[i-1];
for(i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+k]==y[sa[i]+k] ? p-1 : p++;
if(p >= n) break;
m = p;
}
}
void build_height() {
int i, j, k = 0;
for(i = 0; i < n; i++) rank[sa[i]] = i;
for(i = 0; i < n; i++) {
if(k) k--;
j = sa[rank[i]-1];
while(s[i+k] == s[j+k]) k++;
height[rank[i]] = k;
}
}
} sa;
int main() {
//freopen("input.txt", "r", stdin);
int t, kase = 0;
cin >> t;
while(t--) {
scanf("%s%s", T, P);
flag.clear();
find_p(T, P);
int len = strlen(T), len2 = strlen(P);
int pos = 0;
for(int i = 0; i < flag.size(); i++) {
for(int j = pos; j <= flag[i]; j++) {
rmax[j] = flag[i] + len2 - j - 1;
}
pos = flag[i] + 1;
}
for(int i = pos; i < len; i++) rmax[i] = len - i;
sa.clear();
sa.n = len + 1;
for(int i = 0; i < len; i++) sa.s[i] = T[i] - 'a' + 1;
sa.s[len] = 0;
sa.build_sa(30);
sa.build_height();
//for(int i = 0; i < len; i++) cout << rmax[i] << endl;
LL ans = 0;
for(int i = 1; i < sa.n; i++) ans = ans + rmax[sa.sa[i]] - min(sa.height[i], rmax[sa.sa[i]]);
printf("Case %d: %lld\n", ++kase, ans);
}
return 0;
}