LightOj 1428 Melody Comparison(KMP+后缀数组)

题意:给出一个字符串T和一个字符串P,求T的不包含P的不同子串数量。

思路:首先我们可以求出每个位置i可以延伸的不包含P的最远距离,记为rmax[i],那么答案就是sigma(rmax[i])减去重复的一部分,处理重复的一部分可以利用后缀数组的height数组,也就是说答案就是

sigma(rmax[sa[i]] - min(height[i], rmax[sa[i]])),现在的问题就是求出rmax,这个可以用KMP算法预处理出T中所有P串出现的起始位置,然后就可以很轻松的求出rmax了。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

const int MAXN = 50050;
//const int INF = 0x3f3f3f3f;
char P[MAXN], T[MAXN];
int f[MAXN], rmax[MAXN];
vector<int> flag;
void getFail(char* P) {
	int m = strlen(P);
	f[0] = 0; f[1] = 0;
	for(int i = 1; i < m; i++) {
		int j = f[i];
		while(j && P[i]!=P[j]) j = f[j];
		f[i+1] = P[i]==P[j] ? j+1 : 0;
	}
}
int find_p(char* T, char* P) {
	int ans = 0;
	int n = strlen(T), m = strlen(P);
	getFail(P);
	int j = 0;
	for(int i = 0; i < n; i++) {
		while(j && P[j]!=T[i]) j = f[j];
		if(P[j] == T[i]) j++;
		if(j == m) flag.push_back(i-m+1), j=f[j];
	}
	return ans;
}  
struct SuffixArray {  
    char s[MAXN];      /// 原始字符数组(最后一个字符应必须是0,而前面的字符必须非0)  
    int sa[MAXN];     // 后缀数组,sa[0]一定是n-1,即最后一个字符  
    int rank[MAXN];   // 名次数组  
    int height[MAXN]; // height数组  
    int t[MAXN], t2[MAXN], c[MAXN]; // 辅助数组  
    int n; // 字符个数  
  
    void clear() { n = 0; memset(sa, 0, sizeof(sa)); }  
  
    /// m为最大字符值加1。!!! 调用之前需设置好s和n  
    void build_sa(int m) {  
 	    int i, *x = t, *y = t2;  
    	for(i = 0; i < m; i++) c[i] = 0;  
	    for(i = 0; i < n; i++) c[x[i] = s[i]]++;  
    	for(i = 1; i < m; i++) c[i] += c[i-1];  
	    for(i = n-1; i >= 0; i--) sa[--c[x[i]]] = i;  
    	for(int k = 1; k <= n; k <<= 1) {  
      		int p = 0;  
      		for(i = n-k; i < n; i++) y[p++] = i;  
      		for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i]-k;  
      		for(i = 0; i < m; i++) c[i] = 0;  
      		for(i = 0; i < n; i++) c[x[y[i]]]++;  
      		for(i = 0; i < m; i++) c[i] += c[i-1];  
      		for(i = n-1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];  
      		swap(x, y);  
      		p = 1; x[sa[0]] = 0;  
      		for(i = 1; i < n; i++)  
      			x[sa[i]] = y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+k]==y[sa[i]+k] ? p-1 : p++;  
      		if(p >= n) break;  
      		m = p;  
    	}  
  	}  
  
    void build_height() {  
    	int i, j, k = 0;  
    	for(i = 0; i < n; i++) rank[sa[i]] = i;  
    	for(i = 0; i < n; i++) {  
        	if(k) k--;  
      		j = sa[rank[i]-1];  
      		while(s[i+k] == s[j+k]) k++;  
      		height[rank[i]] = k;  
    	}  
  	}  
} sa;
int main() {
    //freopen("input.txt", "r", stdin);
	int t, kase = 0;
	cin >> t;
	while(t--) {
		scanf("%s%s", T, P);
		flag.clear();
		find_p(T, P);
		int len = strlen(T), len2 = strlen(P);
		int pos = 0;
		for(int i = 0; i < flag.size(); i++) {
			for(int j = pos; j <= flag[i]; j++) {
				rmax[j] = flag[i] + len2  - j - 1;
			}
			pos = flag[i] + 1;
		}
		for(int i = pos; i < len; i++) rmax[i] = len - i;
		sa.clear();
		sa.n = len + 1;
		for(int i = 0; i < len; i++) sa.s[i] = T[i] - 'a' + 1;
		sa.s[len] = 0;
		sa.build_sa(30);
		sa.build_height();
		//for(int i = 0; i < len; i++) cout << rmax[i] << endl;
		LL ans = 0;
		for(int i = 1; i < sa.n; i++) ans = ans + rmax[sa.sa[i]] - min(sa.height[i], rmax[sa.sa[i]]);
		printf("Case %d: %lld\n", ++kase, ans);
	}
    return 0;
}


















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值