转自:https://blog.csdn.net/linolzhang/article/details/71075756
1. Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2016
a)Multi-Channel Parts-Based CNN
多通道的 CNN,比较容易理解,一是 Global,通过Crop的全图做CNN;二是 Parts Model,将图像水平分割成多个部分,本文是分割成了4个部分,最后5部分通过全连接形成N维特征。
b)Improved Triplet Loss
Triplet 相信都不陌生,在 FaceNet 中提出,通过构造一个 三元组 <I,I+,I-> 进行样本训练,来驱动CNN网络的改进。
训练过程
采用随机梯度下降法 (SGD) 进行训练,对上面的 Loss函数求导数
2. An Enhanced Deep Feature Representation for Person Re-identification CVPR 2016
a)基于ELF 扩展了新的组合特征 ELF16;
使用color histogram features(颜色直方图特征:RGB,HSV,YCbCr,Lab 和 YIQ)和 texture feature(纹理特征:multi-scale and multi-orientation Gabor features),这个特征更具有区分性和紧凑性。
b)将上面的手选特征与CNN结合,提出 Fusion Feature Net(FFN);
作者是想通过 手动特征(Hand-crafted)与CNN提取特征互补,实现比 单纯的 CNN 或者 单纯的 手动特征 更高的目标区分度。
3. Top-push Video-based Person Re-identification CVPR 2016
a)引入Pooling Color&LBP,HOG3D进行时序特征描述,非作者原创;
HOG3D比较早了,在行为识别中用的比较多,可以参考:
http://lear.inrialpes.fr/people/klaeser/research_hog3d
b)通过对 文献【15】- 点击下载 扩展,提出 TDL方法,即 Top-push distance learning model;
TDL方法是一种空间映射,目的在于 减小类内(intra)距离,增加类间(inter)距离,提高目标的可区分度
【行人识别】https://blog.csdn.net/shenxiaolu1984/article/details/53607268