opencv学习笔记(十七)利用cvPyrSegmentation()做图像分割

本文介绍了图像分割的重要性以及OpenCV中的cvPyrSegmentation()函数,用于实现基于金字塔的图像分割。该函数在低分辨率图像上进行快速初始分割,然后逐层优化。参数包括输入输出图像、存储区域、分割序列、金字塔层数及两个阈值。图像必须满足特定尺寸要求以适应金字塔构建。程序实例展示了函数的使用,并提到了cvCreateMemStorage()用于创建内存存储区。
摘要由CSDN通过智能技术生成

图像分割的意义:

在一幅图像中,人们常常只对其中的部分目标感兴趣,这些目标通常占据一定的区域,并且在某些特性(如灰度、轮廓、颜色和纹理等)上和临近的图像有差别。这些特性差别可能非常明显,也可能很细微,以至肉眼察觉不出来。随着计算机图像处理技术的发展,使得人们可以通过计算机来获取和处理图像信息。图像识别的基础是图像分割,其作用是把反映物体真实情况的、占据不同区域的、具有不同特性的目标区分开来,并形成数字特征。图像分割是图像识别和图像理解的基本前提步骤,图像分割质量的好坏直接影响后续图像处理的效果,甚至决定其成败,因此,图像分割的作用是至关重要的。

cvPyrSegmentation()

有许多操作广泛使用高斯金字塔和拉普拉斯金字塔,但一个特别重要的应用就是利用金字塔实现图像分割。图像分割需要先建立一个图像金字塔,然后在Gi的像素和Gi+1的像素直接依照对应关系,建立起“父—子”关系。通过这种方式,快速初始分割可以先在金字塔高层的低分辨率图像上完成,然后逐层对分割加以优化。

OpenCV的函数cvPyrSegmentation()实现了该算法。
void cvPyrSegmentation(
IplImage* src,
IplImage* dst,
CvMemStorage* storage,
CvSeq** comp,
int level,
double threshold1,
double threshold2
);
参数:
src
输入图像
dst
输出图像
storage: 存储连通部件的序列结果,这里面应该存的是分割的坐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值