chapter 19强化学习入门之SARSA算法

一、SARSA算法

这章木有神马好讲得啦,Q Learning 与 SARSA算法的主要区别在于Q[state,action]的更新函数不同,具体可见code。

另外,Q Learning属于off-policy 算法,即它在更新Q函数时,所用的Q[new_state,:].max() 即 max_action,在new_state下,不一定被智能体用到;而SARSA属于on-policy算法,即它在更新Q函数时,所用的Q[new_state,new_action]一定会在new_state下,被智能体所用到。

智能体在走有陷阱的迷宫时,用Q Learning算法可以获得宝藏,而用SARSA算法则不能,原因在于,Q Learning在做action的时候更激进,更大胆(即其更新Q[state,action]时用的是Q[new_state,:].max()),而SARSA在做action的时候更谨小慎微(即其更新Q[state,action]时用的是Q[new_state,n_action]);

如有困惑,可结合chapter 18 理解!

二、SARSA算法实现

env.py 迷宫环境的实现;
sarsa.py SARSA算法的实现;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sarah ฅʕ•̫͡•ʔฅ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值