提升大学入学准备度:AI与机器学习的应用
1. 大学入学准备度问题的背景
在教育领域,提升学生的大学入学准备度是一个重要目标。然而,传统上我们在解决这个问题时面临诸多挑战。其中,来自低收入家庭的学生上大学并顺利毕业的比例明显较低。这不仅降低了他们未来的生活质量和收入能力,还使他们被贴上“高风险”学生的标签。
当我们在K - 12阶段识别出这些“高风险”学生时,如果发现得足够早,我们可以在课堂内外采取正确的措施,重新吸引他们并提供支持。人类有时不需要大量数据就能察觉风险,比如我们能大致知道哪些学生在SAT或标准化考试中可能表现不佳,或者是否会参加考试。但问题在于,我们常常未能及时识别这些风险。
大脑虽然一直在尝试进行模式预测,但由于一次只能合理关注一件事,且大脑中负责模式识别的部分(如海马体和腹内侧前额叶皮质)会相互竞争注意力,导致我们难以清晰地察觉早期风险。而人工智能在同时识别多种模式方面具有优势,且不会为了吸引我们的注意力而相互比较。
2. 机器学习中的模式识别技术
2.1 分类技术
回到机器学习领域,我们追求最佳的模式识别。在之前的作业分数预测例子中,我们使用线性回归,期望函数的解是单个学生的预期分数。但在预测字母的例子中,情况有所不同。我们需要预测扫描手写字母是“a”“b”“c”等的可能性,这就引出了分类技术。
分类旨在预测输入属于某个类别或组的程度,它属于线性回归的一种变体——逻辑回归。简单的逻辑回归模型可以用少量数据构建,但随着对模型在多种场景下做出准确预测的期望增加,模型所需的训练数据也会增多。
在课堂上,分类问题非常常见。我们在进行差异化教学时,会根据学生的能