人工智能与机器学习在石油行业的应用
1. 机器学习在钻井作业中的应用
在石油和天然气行业,钻井是指借助钻机在地下钻出直径约 12 - 100 厘米的井,随后安装钢管套管。这一过程需要众多专家协同作业,以确保操作顺利、安全且准确。
目前,石油和天然气行业主要运用基于物理的模型来解决常规方法所面临的问题,这些问题包括粘滑振动、井眼清洁、管道故障、循环流失、底部钻具组合(BHA)涡动、卡钻事故、过大扭矩和阻力、低钻速(ROP)、钻头磨损、地层损害以及井眼不稳定等。而机器学习技术在很大程度上能够缓解这些问题。
现代钻机配备了多个传感器,用于收集大量实时元数据和数据。这些数据可以与机器学习相结合,以推断基于先进计算机视觉的视频信息,从而以最高的准确性节省时间和人力。不过,尽管机器学习和数据挖掘技术在该行业有诸多应用,但石油和天然气行业尚未充分挖掘其潜力。例如,皇家荷兰壳牌公司已经实施了由人工智能和机器学习驱动的助手(Emma 和 Ethan),特别是运用自然语言处理技术,为端到端的钻井优化、润滑剂及相关产品提供建议。
操作步骤如下:
1. 利用现代钻机上的传感器收集实时元数据和数据。
2. 将收集到的数据与机器学习算法相结合。
3. 通过机器学习算法推断基于先进计算机视觉的视频信息。
4. 根据推断结果,为钻井作业提供优化建议。
2. 利用机器学习解决问题
机器学习不仅可以缓解石油和天然气行业面临的问题,还能以极高的效率解决复杂问题。它可以作为基于案例的推理工具,凭借过去遇到的大量问题记录,机器学习能够快速筛选海量数据集,找出最相似的过往案例,并提供相应的解决方案。通过机器学习技术收集数