机器学习在硬件安全与光子神经形态计算中的应用
1. 机器学习算法在硬件安全中的应用
1.1 设计优化算法
在硬件安全领域,有几种重要的设计优化算法:
- 自适应迭代优化算法(AIOA) :这是一种模型改进技术,通过权重向量对输入训练数据进行加权,迭代增强显式分类器,以减少误差。
- 多目标进化算法(MOEA) :从随机生成的种群开始,通过多代持续优化过程和适应性逼近帕累托最优解。
- 粒子群优化算法 :通过群体中个体之间的合作和信息分配来确定最优结果,无需复杂的参数调整,通过确定适应度来评估最优解的质量。
1.2 机器学习算法总结
序号 | 机器学习算法 | 优点 | 缺点 |
---|---|---|---|
1 | 监督学习 | - 处理特征少的情况速度快 - 输出明确 - 分类结果较好 - 学习模型对噪声不敏感 |
- 易出现过拟合和欠拟合 - 不适合多分类问题 |
2 | 无监督学习 | - 无需黄金 IC - 处理大数据集高效且可扩展 - 模型简单易实现,与参数无关 |