基于深度学习的旋转异或密码分析
1. 旋转异或密码分析基础
旋转异或密码分析是一种将传统旋转密码分析进行扩展的技术,用于处理密码原语输入输出对之间与非旋转不变常量的异或运算。它引入了 $(\delta, \gamma)$ - 旋转异或差分(RX - 差分)的概念,即 $(x, (x \ll \gamma) \oplus \delta)$,这里 $0 < \gamma < n$ 且 $\delta \in F_2^n$ 是常量,用公式表示为 $\Delta\gamma(x_0, x_1) = x_1 \oplus (x_0 \ll \gamma)$。该方法旨在估计块密码中非线性操作(如模加或与运算)下,两个输入 RX - 差分到一个输出 RX - 差分的转移概率,并分析 RX - 差分在密码原语中的传播情况。需要注意的是,RX - 差分通过线性操作的传输是确定的,但在非线性操作中并非如此。
2. 深度学习在对称密码学中的应用
深度学习在诸多领域已成为变革性技术,如图像识别、自然语言处理和语音识别等。在密码学中,虽然机器学习技术此前多用于侧信道分析,但 2019 年 Gohr 开始探索将深度学习技术用于密码分析,特别是攻击 Speck 密码。其方法是区分由固定输入差分和任意输入差分的明文对加密得到的真实密文对和随机密文对。研究表明,深度学习在差分密码分析中可超越传统的纯差分区分器。
Gohr 训练基于深度学习的差分区分器的算法步骤如下:
Algorithm 1. DL-based Differential Distinguisher for r rounds o
超级会员免费看
订阅专栏 解锁全文
2236

被折叠的 条评论
为什么被折叠?



