光声和热声断层成像的数学原理
光声和热声断层成像(TAT)在医学成像等领域有着重要应用,其数学原理涉及到诸多方面,包括数据采集表面的特性、不同介质中的情况以及数据的唯一性和稳定性等。下面将详细介绍这些内容。
1. 封闭采集表面
封闭采集表面是指完全包围待成像物体的表面。在这种情况下,有以下重要定理:
- 定理2 :若采集表面S是有界区域Ω的边界(即封闭表面),则它是一个唯一集。这意味着观测数据g能唯一确定所求函数$f \in L^2_{comp}(\mathbb{R}^n)$,即使f的支撑集不一定在S内部。
- 证明思路 :由于在封闭表面S上不存在非零的调和函数消失,根据定理1可推出定理2。另外,从能量衰减的角度也可解释:解p的初始数据具有紧支撑,其能量在任何有界区域内都会衰减,特别是在Ω内。若存在非唯一性,即存在非零的f使得$g(y, t) = 0$对所有$y \in S$和t成立,那么可添加齐次狄利克雷边界条件$p|_S = 0$,根据标准的偏微分方程定理,能量在Ω内保持恒定,这与能量衰减矛盾,所以p在Ω内恒为零,进而$f = 0$。
- 定理3 :设S是$\mathbb{R}^n$中有界区域的边界,$f \in L^p(\mathbb{R}^n)$。
- 若$p \leq \frac{2n}{n - 1}$且f在以S上几乎每个点为中心的球面上的球均值都为零,则$f = 0$。
- 当$p > \frac{2n}{n - 1}$且S是球面时,上述结论不成立。
这表明,对于$p \leq \frac{2n}{n
超级会员免费看
订阅专栏 解锁全文
825

被折叠的 条评论
为什么被折叠?



