81、光声和热声断层成像的数学原理

光声和热声断层成像的数学原理

光声和热声断层成像(TAT)在医学成像等领域有着重要应用,其数学原理涉及到诸多方面,包括数据采集表面的特性、不同介质中的情况以及数据的唯一性和稳定性等。下面将详细介绍这些内容。

1. 封闭采集表面

封闭采集表面是指完全包围待成像物体的表面。在这种情况下,有以下重要定理:
- 定理2 :若采集表面S是有界区域Ω的边界(即封闭表面),则它是一个唯一集。这意味着观测数据g能唯一确定所求函数$f \in L^2_{comp}(\mathbb{R}^n)$,即使f的支撑集不一定在S内部。
- 证明思路 :由于在封闭表面S上不存在非零的调和函数消失,根据定理1可推出定理2。另外,从能量衰减的角度也可解释:解p的初始数据具有紧支撑,其能量在任何有界区域内都会衰减,特别是在Ω内。若存在非唯一性,即存在非零的f使得$g(y, t) = 0$对所有$y \in S$和t成立,那么可添加齐次狄利克雷边界条件$p|_S = 0$,根据标准的偏微分方程定理,能量在Ω内保持恒定,这与能量衰减矛盾,所以p在Ω内恒为零,进而$f = 0$。
- 定理3 :设S是$\mathbb{R}^n$中有界区域的边界,$f \in L^p(\mathbb{R}^n)$。
- 若$p \leq \frac{2n}{n - 1}$且f在以S上几乎每个点为中心的球面上的球均值都为零,则$f = 0$。
- 当$p > \frac{2n}{n - 1}$且S是球面时,上述结论不成立。

这表明,对于$p \leq \frac{2n}{n

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性稳定性。此外,文档还列举了大量相关的科研方向技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值