西瓜书-SVM学习

SVM(支持向量机)旨在寻找最大化正负样本距离的超平面。它通过拉格朗日乘子法解决凸优化问题,并利用核函数将数据映射到高维空间实现非线性分类。软间隔允许一定程度的误分类,引入惩罚函数C调整误分类容忍度。序列最小最优化(SMO)算法用于高效求解SVM问题。此外,SVR(支持向量回归)是SVM在回归任务中的应用。
摘要由CSDN通过智能技术生成

1、样本空间中划分可以用线性方程,表示分类的正确性,大于0为分类正确,与法向量同一侧,而且越大代表越可信,小于0为分类不正确,法向量不同一侧,也可成为函数距离,可以随着改变大小。

几何距离l=,改变大小,||w||也会改变,故几何距离保持不变。

SVM就是求一个超平面,使得正负样本的距离最大,同时每一个样本到超平面的距离大于最小值,,》1,

补充:凸优化:min f(x),sb ,i=1....,,凸优化问题它是指约束最优化问题;二次规划:min f(x)=,sb;凸二次规划:min f(x)=,sb且A>=0,目标函数f是二次函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值