近年来,计算机视觉领域取得了长足的发展,其中目标检测是一个受到广泛关注的研究方向。YOLO (You Only Look Once) 系列作为一种基于单阶段目标检测的方法,以其高效性能和实时性而备受推崇。在YOLOv5的基础上,我们进一步结合了RepVGG的重参数化模型,旨在提升检测精度和效率。
RepVGG是由微软亚洲研究院提出的一种极简又强大的重参数化模型结构。与传统的卷积层不同,RepVGG采用了"重参数化"的思想,将卷积操作转化为一个卷积和一个1x1卷积的组合。这种设计使得网络结构更加简洁,减少了参数量,同时保持了与传统卷积层相当的性能。
下面我们将介绍使用YOLOv5和RepVGG结合的目标检测技术,并提供相关的源代码示例:
步骤1:安装依赖
首先,我们需要安装运行所需的依赖库。具体步骤如下:
pip install torch torchvision opencv-python
git clone https://github.com