沸点 | 嬴图联合飞腾发布全场景教育信创白皮书

围绕教育数字化转型和信创人才培养“两大领域”、聚焦办公、教学、科研、管理“四大场景”的《教育行业数字化自主创新 飞腾生态解决方案白皮书》于3月28日重磅发布!

图片

该白皮书历时1年,由25所代表院校、66位专家,119家生态伙伴共同编写,内容涵盖了飞腾作为领先的芯片数字底座在全栈教育行业的生态解决方案及典型实践案例。

图片

百年大计,教育第一。2021年7月6日,教育部联合六大部委发布《关于推进教育新型基础设施建设构建高质量教育支撑体系的指导意见》,提出教育新型基础设施是以新发展理念为引领,以信息化为主导,面向教育高质量发展需要,聚焦信息网络、平台体系、数字资源、智慧校园、创新应用、可信安全等方面的新型基础设施体系。强调在推动教育行业数字化转型的过程中,要有序推动数据中心、信息系统和办公终端的升级改造等工作。此后又出台多项政策。

飞腾一直将教育行业视为重要的战略方向,依托庞大的生态体系资源,携手深度智能科技图厂商——嬴图(同心尚科技),一同致力于深研基于飞腾CPU+嬴图Graph XAI实时图数据库引擎的端到端的智慧教育全栈解决方案,共同开启教育行业破冰新征程。

飞腾是国内领先的自主核心芯片提供商,以“聚焦信息系统核心芯片,支撑国家信息安全和产业发展”为使命,努力成为世界一流芯片企业,用中国芯服务社会。飞腾致力于飞腾系列高性能、低功耗通用计算微处理器的设计研发和产业化推广,同时联合众多国内软硬件生态厂商,提供基于国际主流技术标准、中国先进的全国产信息系统整体解决方案,支撑国家信息安全和重要工业安全。

嬴图是图数据库领域的领先企业,致力于构建世界一流的高性能图增强AI与图数据库、图计算引擎,目标是打造全球最快、最直观的图数据库系统,在超级节点穿透、数据加载、图计算与图查询、动态内存消耗占比、高并发图算法、高性能可视化、多级存储计算加速等多个维度对现有的图AI市场有着指数级的性能及用户体验提升,助力企业全面驾驭和发掘其数据资源,赋能各个行业的数字化、数智化转型升级。

图片

飞腾和嬴图作为同是软硬件的领军企业,充分探索应用数字技术与教育场景的深度融合,共同打造科研AI智能智慧计算平台,旨在通过关联化的高维“图”方式,赋能用户(学生)寓教于乐地运用高清互动的高新技术成果转化,掌握知识、运用知识、发散知识,开发思维,开启智慧。

图片
图1:通过嬴图可视化界面一键查询人、事、物的关联与关系

图片
图2:科研AI智能智慧计算平台架构图

“图”是高维还原世界。实时图数据库(图计算)系统作为一种源自数学图论的技术体系,是大数据时代知识工程的代表进展。因为现实世界是高维且多变的,图引擎可以模拟人类的左右脑,能够用图的形式将大数据、深数据还原成现实世界,将复杂数据从二维表格转为高维图论,并对各种场景进行建模分析。

图的表达方式和人类大脑神经元网络存储与认知事物有极大的相通性,同时图中的模式类似于我们人脑进行举一反三式的思维发散,只要用户(学生)有所思就可以动手在嬴图可视化界面上进行搜索与查询。

以下图为例,当用户(学生)围绕“埃及木乃伊”进行学习时,就会由构建并分析出环绕“古埃及”辐射至北非、地中海、黑海、新月地区乃至印度次大陆地区的整个地理带的经济网。(更多关于图思维的知识点,详见链接:图的思维方式

图片
图3:一图胜千言

飞腾+嬴图科研AI图引擎。目前国内科研AI领域已经有比较成熟的机器学习理论,但大多数还是基于传统的、二维的关系型大数据体系的处理方案,随着研究领域的深入和分析指标的复杂化,大数据体系虽然能够存储数据,但会出现分析难、分析慢、算不动的情况,不能完全满足用户(学生)科研领域知识获取、分析的效率和准确性。因此,无论是通过实时图数据库(图计算)来产生拓扑特征供AI研究使用,还是直接通过实时图数据库(图计算)引擎完成AI训练分析,都可以实现存储和计算更高维的知识呈现,并可以保证知识的可扩展、查询的效率和准确性。

图片
图4:图数据库与关系型数据库的架构差异

值得一提的是,飞腾+嬴图打造的科研AI智能智慧计算平台的底层引擎采用嬴图原生图存储结构,通过底层的算力做支撑,具备解决深度的查询、速度和可解释等问题。(而非某些图解决方案提供商只是在关系型数据上进行一层徒有其表的逻辑封装,这通常会受制于底层架构而无法高效处理高维数据,更无法高效地还原实体间的真实关系。)

飞腾+嬴图科研AI智能智慧计算平台还实现了支持诸如在算法类型、算法数量以及算法性能、准确度方面的技术价值,通过嬴图超级节点穿透、高密度并发、动态剪枝、多级存储计算加速等创新性的专利技术,实现了对动态、海量知识数据的深度下钻、多维度归因分析,旨在让用户(学生)在知识获取、深度学习探索、知识关联分析、知识路径查询等方面更有获得感、启发性——让技术之钥开启智慧。(相关技术介绍不多赘言,对图技术和关系型数据库感兴趣的读者可详阅:图数据库与关系型数据库的区别/高并发图数据库系统如何实现?

实现LLM+Graph技术协同。图技术是以显式、明确和结构化的方式表示知识。大模型和图技术之间的协同合作打破了大模型技术本身自带的种种限制。飞腾+嬴图科研AI智能智慧计算平台依托嬴图底层引擎,对大语言模型(Large Language Model,以下简称大模型)有增强AI系统的功能性、智能性和可解释性的特点。

针对于大模型的局限性,尤其是大模型作为黑盒模型,它们以参数的形式隐式地表示知识,这将严重影响用户(学生)对于知识获取的准确性、可信性,尤其在处理深度推理和关联任务时,大模型的限制更加明显。如搜索“成吉思汗”和科学家“牛顿”之间有什么联系这样的问题时,ChatGPT是无法回答的,因为“两者在历史上存在的时间和地理位置相隔很远”。

图片
图5:大模型无法实现(或替代)图数据库的深层检索

而通过图技术的深度穿透和因果关系搜索,就可以生动地生成并呈现。图数据库的海量结构化(深度、精准、白盒化)查询可以直接增强LLM大模型能力。

图片
图6:图数据库的深度、精准、白盒化性能特点可以赋能增强LLM大模型能力

此外,嬴图Graph与大模型(LLM)还解锁了更多的技术实现,诸如使用大模型自动化构建“图”、在“图”上问答等,不仅可以帮助用户(学生)能从语义层面理解意图、快速建图,同时可以以对话的方式与图数据库进行互动,并经过智能分析后给出准确答案,为实现智能知识服务提供研究参考。(更多关于技术上的细节了解,详阅嬴图 | LLM+Graph:大语言模型与图数据库技术的协同

图片
图7:嬴图Graph+LLM“图”上问答

教育大业,博学笃行。面向高质量教育是飞腾和嬴图共同的使命担当,双方还将进一步携手信息科技,共同探索并构建更多“文化自信+科技创新”的智慧教育解决方案,共同推动教育领域的数字化转型升级和改造。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值