背景知识
对于一个数据集合 x=(x1,x2,⋯,xn) ;
均值
方差
样本方差
总体方差
标准差
标准差反映了各个维度偏离其均值的程度
协方差
协方差矩阵
如果有一个数据集有三个维度
{x,y,z}
COV(x,y)
LDA(Linear Discriminant Analysis)
基本思想
给定训练样集,设法将样例投射到一条直线上,这个处理就是将样本投射到另一个空间,使得同类样本的投影点尽可能接近,异类样本点尽可能远离;在对于新样本进行分类的时候,将其投影到相同的这条直线上,在根据投影点的位置来确定新样本的类别。
离散度矩阵
给定数据集合
D={(xi,yi)}mi=1,yi∈{0,1}
令
Xi,μi,Σi
分别表示第
i∈{0,1}
类示例的集合、均值向量、协方差矩阵。
样本到直线的投影
将数据投影到直线
w
上(只有中心也就是均值),则两个类别样本中心在直线上的投影分别是
wTμ0
和
wTμ1
将所有样本都投射到直线上,则两类样本的协方差分别为
wTΣ0w
和
wTΣ1w
直线都是一维的,
wTμ0
和
wTμ1
和
wTΣ0w
和
wTΣ1w
都是实数。
企图
我们想让同类样本在这条直线上的投影点尽可能地接近,则
wTΣ0w+wTΣ1w
要尽可能小,
同时异类的样本投影点要尽可能地远,这就要使得
||wTμ0−wTμ1||22
尽可能地大。
同时考虑两者则定义:
类内散度矩阵
类间散度矩阵
新的J
令 wTSww=1 这一步我没看懂为什么);
则此时如果要确定 w
改造得到 F(w,λ)=−wTSbw+λwTSww−1
新名词
瑞利商
广义特征值
定义:设
A
和
1:广义特征值是标准特征值得推广,当
B=I
是,广义特征值问题退化为标准特征值问题
2:特征向量是非零的
3:广义特征值的求解
厄米特矩阵(Hermitian Conjugate Matrix)
厄米特矩阵(Hermitian Conjugate Matrix, 又译作“埃尔米特矩阵”或“厄米矩阵”),指的是自共轭矩阵。矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等
n阶复方阵A的对称单元互为共轭,即A的共轭转置矩阵等于它本身,则A是厄米特矩阵(Hermitian Matrix)。
例如:矩阵
显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。
到底什么是瑞利商
A
和
设
λi,xi
为
A
相对于
x1,x2,⋯,xn
所以,
∀x∈Cn
,
∃a1,a2,⋯,an∈C
使得
x=∑i=1naixi
注:属于不同特征值的特征向量线性无关
实对称矩阵的属于不同特征值的特征向量正交
证明:
前提:
设 λi,xi 为 A 相对于
x1,x2,⋯,xn 线性无关,所以, ∀x∈Cn , ∃a1,a2,⋯,an∈C 使得 x=∑i=1naixi
证明:
拉格朗日乘子法
什么是拉格朗日乘子法
基本的拉格朗日乘子法就是求函数
f(x1,x2,…)
在约束条件
g(x1,x2,…)=0
下的极值的方法。
其主要思想是将约束条件函数与原函数联立,从而求出使原函数取得极值的各个变量的解。
一般形式和解法
对于具有
ℓ
个等式约束的n维优化问题
把原目标函数 f(x) 改造成为如下形式的新的目标函数
式中的 hk(x) 就是原目标函数 f(x) 的等式约束条件,而待定系数 λk 称为拉格朗日乘子。这种方法称为拉格朗日乘子法。
在极值点处,有 ∂F(x,λ)xi=0,{i=1,2,…,n} 和 ∂F(x,λ)λk=0,{k=1,2,…,ℓ} ,共有 n+ℓ 个方程,足以算出这 n+ℓ 个变量,此法也称为升维法。