A是方阵
如果有一个矩阵
A=⎛⎝⎜⎜⎜⎜⎜a11a21⋮an1a12a22⋮an2……⋱…a1na2n⋮ann⎞⎠⎟⎟⎟⎟⎟=(α1,α2,…,αn)=⎛⎝⎜⎜⎜⎜⎜βT1βT2⋮βTn⎞⎠⎟⎟⎟⎟⎟
A
=
(
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
…
a
n
n
)
=
(
α
1
,
α
2
,
…
,
α
n
)
=
(
β
1
T
β
2
T
⋮
β
n
T
)
A∼B=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⇒(1)|λE−A|=|λE−B|,⇒(2)r(A)=r(B),⇒(3)A和B有相同的特征值,⇒(4)|A|=|B|=∏ni=1λi,⇒(5)∑ni=1aii=∑ni=1bii=∑ni=1λi
A
∼
B
=
{
⇒
(
1
)
|
λ
E
−
A
|
=
|
λ
E
−
B
|
,
⇒
(
2
)
r
(
A
)
=
r
(
B
)
,
⇒
(
3
)
A
和
B
有
相
同
的
特
征
值
,
⇒
(
4
)
|
A
|
=
|
B
|
=
∏
i
=
1
n
λ
i
,
⇒
(
5
)
∑
i
=
1
n
a
i
i
=
∑
i
=
1
n
b
i
i
=
∑
i
=
1
n
λ
i
可逆
以下条件等价
⇔|A|≠0 ⇔ | A | ≠ 0
⇔A ⇔ A 是非奇异矩阵
⇔A ⇔ A 的特征值 λ1,λ2,…,λn λ 1 , λ 2 , … , λ n 都不为 0 0
⇔A ⇔ A 可表示成初等矩阵的乘积 →A=E1E2⋯Er → A = E 1 E 2 ⋯ E r
⇔A ⇔ A 等价于 n n 阶单位矩阵
⇔A ⇔ A 的列(行)向量组线性无关
⇔ ⇔ 齐次线性方程组 AX=0 A X = 0 仅有零解
⇔ ⇔ 非齐次线性方程组 AX=b A X = b 有唯一解
⇔ ⇔ 任一n维向量可由 A A <script type="math/tex" id="MathJax-Element-76">A</script>的列(或行)向量组线性表示