向量组及其线性组合
定义1:
n
n
个有次序的数所组成的数组称为
n
n
维向量,这个数称为该向量的
n
n
个分量,第个数称为第
i
i
分量。
分量全为实数的向量称为实向量,分量为复数的向量称为复向量
列向量:
行向量:
如果按照定义 aT a T 和 a a 是两个相同的向量,因为都是有序数组,而且元素顺序相同。但是我们把它们看成是不同的向量。
向量组
若干个相同维数的列向量(或者相同维数的行向量)所组成的集合叫做向量组
n×m
n
×
m
向量组
m
m
个维列向量所组成的向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
构成一个
n×m
n
×
m
矩阵:
m×n m × n 向量组
m m 个维行向量所组成的向量组 B:b1,b2,…,bm B : b 1 , b 2 , … , b m 构成一个 m×n m × n 矩阵:
定义2:
给定向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
对于任意一组实数
k1,k2,…,km
k
1
,
k
2
,
…
,
k
m
,表达式:
称为向量组 A A 的一个线性组合,称为这个线性组合的系数。
给定向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
和向量
b
b
,如果存在一组数
λ1,λ2,…,λm
λ
1
,
λ
2
,
…
,
λ
m
使:
则向量 b b 是向量组 A A 的线性组合,这是称向量能由向量组 A A 线性表示
定理1:
向量能由向量组 A:a1,a2,…,am A : a 1 , a 2 , … , a m 线性表示的充分必要条件是矩阵 A=(a1,a2,…,am) A = ( a 1 , a 2 , … , a m ) 的秩等于矩阵 B=(a1,a2,…,am,b) B = ( a 1 , a 2 , … , a m , b ) 的秩
定义:
设有两个向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
以及
B:b1,b2,…,bℓ
B
:
b
1
,
b
2
,
…
,
b
ℓ
,若
B
B
组中的每个向量都能由向量组线性表示,则称向量组
B
B
能由向量组线性表示,若向量组
A
A
与向量组能相互线性表示,则称这两个向量组等价
系数矩阵:
A=(a1,a2,…,am)
A
=
(
a
1
,
a
2
,
…
,
a
m
)
B=(b1,b2,…,bℓ)
B
=
(
b
1
,
b
2
,
…
,
b
ℓ
)
向量组
B
B
能由向量组线性表示,即对每一个向量
bj(j=1,2,…,ℓ)
b
j
(
j
=
1
,
2
,
…
,
ℓ
)
存在数
k1j,k2j,…,kmj
k
1
j
,
k
2
j
,
…
,
k
m
j
使得
从而
这里矩阵 Km×ℓ=(kij) K m × ℓ = ( k i j ) 称为这一线性表示的系数矩阵
定理
向量组
B:b1,b2,…,bℓ
B
:
b
1
,
b
2
,
…
,
b
ℓ
能由向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
线性表示的充要条件是矩阵
A=(a1,a2,…,am)
A
=
(
a
1
,
a
2
,
…
,
a
m
)
的秩等于矩阵
(A,B)=(a1,a2,…,am,b1,b2,…,bℓ)
(
A
,
B
)
=
(
a
1
,
a
2
,
…
,
a
m
,
b
1
,
b
2
,
…
,
b
ℓ
)
的秩,即
R(A)=R(A,B)
R
(
A
)
=
R
(
A
,
B
)
。
推论:
向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
与向量组
B:b1,b2,…,bℓ
B
:
b
1
,
b
2
,
…
,
b
ℓ
等价的充分必要条件是
其中 A A 和是向量组 A A 和所构成的矩阵
定理:
设向量组
B:b1,b2,…,bℓ
B
:
b
1
,
b
2
,
…
,
b
ℓ
能由向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
线性表示,则
R(b1,b2,…,bℓ)≤R(a1,a2,…,am)
R
(
b
1
,
b
2
,
…
,
b
ℓ
)
≤
R
(
a
1
,
a
2
,
…
,
a
m
)
这条定理等价于:
⇔
⇔
有矩阵
K
K
使得
⇔
⇔
方程
AX=B
A
X
=
B
有解
向量组的线性相关性
定义:
给定向量组
A:a1,a2,…,am
A
:
a
1
,
a
2
,
…
,
a
m
,如果存在不全为零的数
k1,k2,…,km
k
1
,
k
2
,
…
,
k
m
使:
则称向量组 A A 是线性相关的,否则称它是线性无关
定理:
向量组线性相关的充分必要条件是它所构成的矩阵
A=(a1,a2,⋯,am)
A
=
(
a
1
,
a
2
,
⋯
,
a
m
)
的秩小于向量个数
m
m
,向量组线性无关的充分必要条件是
R(A)=m
R
(
A
)
=
m
定理:
(1)
(
1
)
若向量组
A:a1,⋯,am
A
:
a
1
,
⋯
,
a
m
线性相关,则向量组
B:a1,⋯,am,am+1
B
:
a
1
,
⋯
,
a
m
,
a
m
+
1
也线性相关,反之,若向量组
B
B
线性无关,则向量组也线性无关。
(2)
(
2
)
m
m
个维向量组成的向量组,当维数
n
n
小于向量个数时一定线性相关。特别的
n+1
n
+
1
个
n
n
维向量一定线性相关
设向量组
A:a1,⋯,am
A
:
a
1
,
⋯
,
a
m
线性无关,而向量组
B:a1,⋯,am,b
B
:
a
1
,
⋯
,
a
m
,
b
线性相关,则向量
b
b
必能由向量组
A
A
线性表示,且表达式是唯一的。
向量组的秩
定义:
设有向量组如果在
A
A
中能选出个向量
a1,a2,⋯,ar
a
1
,
a
2
,
⋯
,
a
r
满足
(i)
(
i
)
向量组
A0:a1,a2,⋯,ar
A
0
:
a
1
,
a
2
,
⋯
,
a
r
线性无关
(ii)
(
i
i
)
向量组
A
A
中任意个向量(如果有
r+1
r
+
1
个向量)都线性相关
那么称向量组
A0
A
0
是向量组
A
A
的一个最大线性无关向量组(简称最大无关组),最大无关组所含向量个数称为向量组
A
A
的秩,记作
推论(最大线性无关组的等价定义)
设向量组
A0:a1,a2,⋯,ar
A
0
:
a
1
,
a
2
,
⋯
,
a
r
是向量组
A
A
的一个部分组,且满足
向量组
A0
A
0
线性无关
(ii)
(
i
i
)
向量组
A
A
的任意一个向量都能由向量组线性表示,那么向量组
A0
A
0
便是向量组
A
A
的一个最大无关组
定理
矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩
向量组能由向量组
a1,a2,⋯,am
a
1
,
a
2
,
⋯
,
a
m
线性表示的充分必要条件是
若向量组 B B 能由向量组线性表示,则 RB≤RA R B ≤ R A
线性方程组解的结构
(1)
n
n
个未知数的齐次线性方程组有非零解的充分必要条件是系数矩阵的秩
R(A)<n
R
(
A
)
<
n
(2)
n
n
个未知数的非齐次线性方程组有解的重复必要条件是系数矩阵
A
A
的秩等于增广矩阵的秩,且当
R(A)=R(B)=n
R
(
A
)
=
R
(
B
)
=
n
时方程组有唯一解,当
R(A)=R(B)=r<n
R
(
A
)
=
R
(
B
)
=
r
<
n
时方程组有无限多个解
设有齐次线性方程组:
记:
则 (1) ( 1 ) 式可以写成向量方程:
若 x1=ξ11,x2=ξ21,⋯,xn=ξn1 x 1 = ξ 11 , x 2 = ξ 21 , ⋯ , x n = ξ n 1 为 (1) ( 1 ) 的解,则:
称为方程组 (1) ( 1 ) 的解向量,它也是向量方程 (2) ( 2 ) 的解
相关性质:
性质1:若 x=ξ1,x=ξ2 x = ξ 1 , x = ξ 2 是向量方程 (2) ( 2 ) 的解,则 x=ξ1+ξ2 x = ξ 1 + ξ 2 也是向量方程 (2) ( 2 ) 的解
性质2:若 x=ξ1 x = ξ 1 为向量方程 (2) ( 2 ) 的解, k k 为实数,则也是向量方程组 (2) ( 2 ) 的解
齐次线性方程组
齐次线性方程组齐次线性方程组的解集的最大无关组称为该齐次线性方程组的基础解系
系数矩阵
若系数矩阵的行最简形为
令 xr+1,⋯,xn x r + 1 , ⋯ , x n 作为自由未知数,并且令它们依次等于 c1,⋯,cn−r c 1 , ⋯ , c n − r 可得方程组 (1) ( 1 ) 的通解。
把上式记为:
x=c1ξ1+c2ξ2+⋯+cn−rξn−r x = c 1 ξ 1 + c 2 ξ 2 + ⋯ + c n − r ξ n − r
定理:
设
m×n
m
×
n
矩阵
A
A
的秩,则
n
n
元齐次线性方程组的解集
S
S
的秩
非齐次线性方程组
可以写作向量形式:
性质:
设 x=η1,x=η2 x = η 1 , x = η 2 都是向量方程组 (5) ( 5 ) 的解,则 x=η1−η2 x = η 1 − η 2 为对应的齐次线性方程组
的解
性质:
设 x=η x = η 是方程 (5) ( 5 ) 的解, x=ξ x = ξ 是方程 (6) ( 6 ) 的解,则 x=ξ+η x = ξ + η 仍然是方程 (5) ( 5 ) 的解。
非齐次方程的通解=对应齐次线性方程组的通解+非齐次线性方程组的一个特解
考虑增广矩阵:
例子:
求解线性方程组
R(A)=R(B)=2 R ( A ) = R ( B ) = 2 ,故方程组有解,并且有
可以取 x2,x4 x 2 , x 4 为自由变量
取 x2=x4=0 x 2 = x 4 = 0 则 x1=x3=12 x 1 = x 3 = 1 2 得到方程组的一个解
对应齐次线性方程组的
取:
x2=1,x4=0→x1=1,x3=0 x 2 = 1 , x 4 = 0 → x 1 = 1 , x 3 = 0
x2=0,x4=1→x1=1,x3=2 x 2 = 0 , x 4 = 1 → x 1 = 1 , x 3 = 2
对应基础解系
于是通解为: