向量组线性相关性

向量组及其线性组合


定义1:
n n 个有次序的数a1,a2,,an所组成的数组称为 n n 维向量,这n个数称为该向量的 n n 个分量,第i个数称为第 i i 分量。
分量全为实数的向量称为实向量,分量为复数的向量称为复向量
列向量:

a=(a1a2an)

行向量:

aT=(a1,a2,,an) a T = ( a 1 , a 2 , ⋯ , a n )

如果按照定义 aT a T a a 是两个相同的向量,因为都是有序数组,而且元素顺序相同。但是我们把它们看成是不同的向量。

向量组
若干个相同维数的列向量(或者相同维数的行向量)所组成的集合叫做向量组

n×m n × m 向量组
m m n列向量所组成的向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 构成一个 n×m n × m 矩阵:

An×m=(a1,a2,,am) A n × m = ( a 1 , a 2 , … , a m )

m×n m × n 向量组
m m n行向量所组成的向量组 B:b1,b2,,bm B : b 1 , b 2 , … , b m 构成一个 m×n m × n 矩阵:
Bm×n=bT1bT2bTm B m × n = ( b 1 T b 2 T ⋮ b m T )


定义2:

给定向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 对于任意一组实数 k1,k2,,km k 1 , k 2 , … , k m ,表达式:

k1a1+k2a2++kmam k 1 a 1 + k 2 a 2 + ⋯ + k m a m

称为向量组 A A 的一个线性组合k1,k2,,km称为这个线性组合的系数

给定向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 和向量 b b ,如果存在一组数 λ1,λ2,,λm λ 1 , λ 2 , … , λ m 使:

b=λ1a1+λ2a2++λmam b = λ 1 a 1 + λ 2 a 2 + ⋯ + λ m a m

则向量 b b 是向量组 A A 线性组合,这是称向量b能由向量组 A A 线性表示

定理1:

向量b能由向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 线性表示的充分必要条件是矩阵 A=(a1,a2,,am) A = ( a 1 , a 2 , … , a m ) 的秩等于矩阵 B=(a1,a2,,am,b) B = ( a 1 , a 2 , … , a m , b ) 的秩

定义:
设有两个向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 以及 B:b1,b2,,b B : b 1 , b 2 , … , b ℓ ,若 B B 组中的每个向量都能由向量组A线性表示,则称向量组 B B 能由向量组A线性表示,若向量组 A A 与向量组B相互线性表示,则称这两个向量组等价

系数矩阵:
A=(a1,a2,,am) A = ( a 1 , a 2 , … , a m )
B=(b1,b2,,b) B = ( b 1 , b 2 , … , b ℓ )
向量组 B B 能由向量组A线性表示,即对每一个向量 bj(j=1,2,,) b j ( j = 1 , 2 , … , ℓ ) 存在数 k1j,k2j,,kmj k 1 j , k 2 j , … , k m j 使得

bj=k1ja1+k2ja2++kmjam=(a1,a2,,am)k1jk2jkmj b j = k 1 j a 1 + k 2 j a 2 + ⋯ + k m j a m = ( a 1 , a 2 , … , a m ) ( k 1 j k 2 j ⋮ k m j )

从而
(b1,b2,,b)=(a1,a2,,am)k11k21km1k12k22km2k1k2km ( b 1 , b 2 , … , b ℓ ) = ( a 1 , a 2 , … , a m ) ( k 11 k 12 ⋯ k 1 ℓ k 21 k 22 ⋯ k 2 ℓ ⋮ ⋮ ⋱ ⋮ k m 1 k m 2 ⋯ k m ℓ )

这里矩阵 Km×=(kij) K m × ℓ = ( k i j ) 称为这一线性表示的系数矩阵

定理
向量组 B:b1,b2,,b B : b 1 , b 2 , … , b ℓ 能由向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 线性表示的充要条件是矩阵 A=(a1,a2,,am) A = ( a 1 , a 2 , … , a m ) 的秩等于矩阵 (A,B)=(a1,a2,,am,b1,b2,,b) ( A , B ) = ( a 1 , a 2 , … , a m , b 1 , b 2 , … , b ℓ ) 的秩,即 R(A)=R(A,B) R ( A ) = R ( A , B )

推论:
向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 与向量组 B:b1,b2,,b B : b 1 , b 2 , … , b ℓ 等价的充分必要条件是

R(A)=R(B)=R(A,B) R ( A ) = R ( B ) = R ( A , B )

其中 A A B是向量组 A A B所构成的矩阵

定理:
设向量组 B:b1,b2,,b B : b 1 , b 2 , … , b ℓ 能由向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m 线性表示,则 R(b1,b2,,b)R(a1,a2,,am) R ( b 1 , b 2 , … , b ℓ ) ≤ R ( a 1 , a 2 , … , a m )
这条定理等价于:

有矩阵 K K 使得B=AK
方程 AX=B A X = B 有解


向量组的线性相关性

定义:

给定向量组 A:a1,a2,,am A : a 1 , a 2 , … , a m ,如果存在不全为零的数 k1,k2,,km k 1 , k 2 , … , k m 使:

k1a1+k2a2++kmam=0 k 1 a 1 + k 2 a 2 + ⋯ + k m a m = 0

则称向量组 A A 线性相关的,否则称它是线性无关

定理:
向量组A:a1,a2,,am线性相关的充分必要条件是它所构成的矩阵 A=(a1,a2,,am) A = ( a 1 , a 2 , ⋯ , a m ) 的秩小于向量个数 m m ,向量组A线性无关的充分必要条件是 R(A)=m R ( A ) = m

定理:
(1) ( 1 ) 若向量组 A:a1,,am A : a 1 , ⋯ , a m 线性相关,则向量组 B:a1,,am,am+1 B : a 1 , ⋯ , a m , a m + 1 也线性相关,反之,若向量组 B B 线性无关,则向量组A也线性无关。
(2) ( 2 ) m m n维向量组成的向量组,当维数 n n 小于向量个数m时一定线性相关。特别的 n+1 n + 1 n n 维向量一定线性相关
(3)设向量组 A:a1,,am A : a 1 , ⋯ , a m 线性无关,而向量组 B:a1,,am,b B : a 1 , ⋯ , a m , b 线性相关,则向量 b b 必能由向量组 A A 线性表示,且表达式是唯一的。


向量组的秩

定义:

设有向量组A如果在 A A 中能选出r个向量 a1,a2,,ar a 1 , a 2 , ⋯ , a r 满足
(i) ( i ) 向量组 A0:a1,a2,,ar A 0 : a 1 , a 2 , ⋯ , a r 线性无关
(ii) ( i i ) 向量组 A A 中任意r+1个向量(如果有 r+1 r + 1 个向量)都线性相关
那么称向量组 A0 A 0 是向量组 A A 的一个最大线性无关向量组(简称最大无关组),最大无关组所含向量个数r称为向量组 A A 的秩,记作RA

推论(最大线性无关组的等价定义)
设向量组 A0:a1,a2,,ar A 0 : a 1 , a 2 , ⋯ , a r 是向量组 A A 的一个部分组,且满足
(i)向量组 A0 A 0 线性无关
(ii) ( i i ) 向量组 A A 的任意一个向量都能由向量组A0线性表示,那么向量组 A0 A 0 便是向量组 A A 的一个最大无关组

定理
矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩

向量组b1,b2,,b能由向量组 a1,a2,,am a 1 , a 2 , ⋯ , a m 线性表示的充分必要条件是

R(a1,a2,,am)=R(a1,,am,b1,,b) R ( a 1 , a 2 , ⋯ , a m ) = R ( a 1 , ⋯ , a m , b 1 , ⋯ , b ℓ )

若向量组 B B 能由向量组A线性表示,则 RBRA R B ≤ R A


线性方程组解的结构

(1) n n 个未知数的齐次线性方程组Ax=0有非零解的充分必要条件是系数矩阵的秩 R(A)<n R ( A ) < n
(2) n n 个未知数的非齐次线性方程组Ax=b有解的重复必要条件是系数矩阵 A A 的秩等于增广矩阵B的秩,且当 R(A)=R(B)=n R ( A ) = R ( B ) = n 时方程组有唯一解,当 R(A)=R(B)=r<n R ( A ) = R ( B ) = r < n 时方程组有无限多个解
设有齐次线性方程组:

a11x1+a12x2++a1nxn=0,a21x1+a22x2++a2nxn=0,am1x1+am2x2++amnxn=0,(1) (1) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 , ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 ,

记:
A=a11a21am1a12a22am2a1na2namn A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n )

x=x1x2xn x = ( x 1 x 2 ⋮ x n )

(1) ( 1 ) 式可以写成向量方程:
Ax=0(2) (2) A x = 0

x1=ξ11,x2=ξ21,,xn=ξn1 x 1 = ξ 11 , x 2 = ξ 21 , ⋯ , x n = ξ n 1 (1) ( 1 ) 的解,则:
x=ξ=ξ11ξ21ξn1 x = ξ = ( ξ 11 ξ 21 ⋮ ξ n 1 )

称为方程组 (1) ( 1 ) 解向量,它也是向量方程 (2) ( 2 ) 的解
相关性质:
性质1: x=ξ1,x=ξ2 x = ξ 1 , x = ξ 2 是向量方程 (2) ( 2 ) 的解,则 x=ξ1+ξ2 x = ξ 1 + ξ 2 也是向量方程 (2) ( 2 ) 的解
性质2: x=ξ1 x = ξ 1 为向量方程 (2) ( 2 ) 的解, k k 为实数,则x=kξ1也是向量方程组 (2) ( 2 ) 的解


齐次线性方程组

齐次线性方程组齐次线性方程组的解集的最大无关组称为该齐次线性方程组基础解系
系数矩阵
若系数矩阵的行最简形为

B=100001b11br1b1,nrbr,nr00 B = ( 1 ⋯ 0 b 11 ⋯ b 1 , n − r ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 0 ⋯ 1 b r 1 ⋯ b r , n − r 0 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 )

x1=b11xr+1b1,nrxnxr=br1xr+1br,nrxn(3) (3) { x 1 = − b 11 x r + 1 − ⋯ − b 1 , n − r x n ⋯ ⋯ x r = − b r 1 x r + 1 − ⋯ − b r , n − r x n

xr+1,,xn x r + 1 , ⋯ , x n 作为自由未知数,并且令它们依次等于 c1,,cnr c 1 , ⋯ , c n − r 可得方程组 (1) ( 1 ) 通解
x1xrxr+1xr+2xn=c1b11br1100+c2b12br2010++cnrb1,nrbr,nr001 ( x 1 ⋮ x r x r + 1 x r + 2 ⋮ x n ) = c 1 ( − b 11 ⋮ − b r 1 1 0 ⋮ 0 ) + c 2 ( − b 12 ⋮ − b r 2 0 1 ⋮ 0 ) + ⋯ + c n − r ( − b 1 , n − r ⋮ − b r , n − r 0 0 ⋮ 1 )

把上式记为:
x=c1ξ1+c2ξ2++cnrξnr x = c 1 ξ 1 + c 2 ξ 2 + ⋯ + c n − r ξ n − r

定理:
m×n m × n 矩阵 A A 的秩R(A)=r,则 n n 元齐次线性方程组Ax=0的解集 S S 的秩Rs=nr


非齐次线性方程组

a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm,(4) (4) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m ,

可以写作向量形式:
Ax=b(5) (5) A x = b

性质:
x=η1,x=η2 x = η 1 , x = η 2 都是向量方程组 (5) ( 5 ) 的解,则 x=η1η2 x = η 1 − η 2 为对应的齐次线性方程组
Ax=0(6) (6) A x = 0

的解
性质:
x=η x = η 是方程 (5) ( 5 ) 的解, x=ξ x = ξ 是方程 (6) ( 6 ) 的解,则 x=ξ+η x = ξ + η 仍然是方程 (5) ( 5 ) 的解。

非齐次方程的通解=对应齐次线性方程组的通解+非齐次线性方程组的一个特解

考虑增广矩阵:

B=100001b11br1b1,nrbr,nr00d1dr000 B ∗ = ( 1 ⋯ 0 b 11 ⋯ b 1 , n − r d 1 ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 0 ⋯ 1 b r 1 ⋯ b r , n − r d r 0 ⋯ 0 0 ⋮ ⋱ ⋮ 0 0 ⋯ 0 0 )

x1=b11xr+1b1,nrxn+d1xr=br1xr+1br,nrxn+dr(7) (7) { x 1 = − b 11 x r + 1 − ⋯ − b 1 , n − r x n + d 1 ⋯ ⋯ x r = − b r 1 x r + 1 − ⋯ − b r , n − r x n + d r

x1xrxr+1xr+2xn=c1b11br1100+c2b12br2010++cnrb1,nrbr,nr001+d1dr000 ( x 1 ⋮ x r x r + 1 x r + 2 ⋮ x n ) = c 1 ( − b 11 ⋮ − b r 1 1 0 ⋮ 0 ) + c 2 ( − b 12 ⋮ − b r 2 0 1 ⋮ 0 ) + ⋯ + c n − r ( − b 1 , n − r ⋮ − b r , n − r 0 0 ⋮ 1 ) + ( d 1 ⋮ d r 0 0 ⋮ 0 )

例子:
求解线性方程组
x1x1x1x2x2+x2x3+x32x3+x43x43x4=0=1=12 { x 1 − x 2 − x 3 + x 4 = 0 x 1 − x 2 + x 3 − 3 x 4 = 1 x 1 − x 2 − 2 x 3 + 3 x 4 = − 1 2

111111112133011210010001012012120 ( 1 − 1 − 1 1 0 1 − 1 1 − 3 1 1 − 1 − 2 3 − 1 2 ) ∼ ( 1 − 1 0 − 1 1 2 0 0 1 − 2 1 2 0 0 0 0 0 )

R(A)=R(B)=2 R ( A ) = R ( B ) = 2 ,故方程组有解,并且有
可以取 x2,x4 x 2 , x 4 为自由变量
x1x3=x2+x4+12=2x4+12 { x 1 = x 2 + x 4 + 1 2 x 3 = 2 x 4 + 1 2

x2=x4=0 x 2 = x 4 = 0 x1=x3=12 x 1 = x 3 = 1 2 得到方程组的一个解
η=120120 η ∗ = ( 1 2 0 1 2 0 )

对应齐次线性方程组的
{x1x3=x2+x4=2x4 { x 1 = x 2 + x 4 x 3 = 2 x 4

取:
x2=1,x4=0x1=1,x3=0 x 2 = 1 , x 4 = 0 → x 1 = 1 , x 3 = 0
x2=0,x4=1x1=1,x3=2 x 2 = 0 , x 4 = 1 → x 1 = 1 , x 3 = 2
对应基础解系
ξ1=1100,ξ2=1021 ξ 1 = ( 1 1 0 0 ) , ξ 2 = ( 1 0 2 1 )

于是通解为:
x1x2x3x4=c11100+c21021+120120 ( x 1 x 2 x 3 x 4 ) = c 1 ( 1 1 0 0 ) + c 2 ( 1 0 2 1 ) + ( 1 2 0 1 2 0 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值